Abdoli, M., Saeidi, M., Jalali-Honarmand, S., Mansourifar, S., & Ghobadi, M. E. 2013. Evaluation of some physiological and biochemical traits and their relationships with yield and its components in some improved wheat cultivars under post-anthesis water deficit. Environmental Stresses in Crop Sciences, 6 (1), 47-63. [In Persian].
Adriano, S., Bartolomeo, D., Cristos, X., & Andras, M. 2005. Antioxidant defenses in olive trees during drought stress: changes in activity of some antioxidant enzymes. Functional Plant Biology, 32, 45-53. https://pubmed.ncbi.nlm.nih.gov/32689110/
Alghamdi, A.A. 2009. Evaluation of oxidative stress tolerance in two wheat (
Triticum aestivum) cultivars in response to drought. International Journal of Agriculture Biology, 11, 7-12.
http://www.fspublishers.org/
Amini Z., Moalemi N.A., & saadati, S. 2014. Effects of water deficit on proline content and activity of antioxidant enzymes among three olive (Olea europaea L.) cultivars. Journal of Plant Research, 27 (2), 156-167. https://plant.ijbio.ir/article_348.html
Bahrololomi, S. M. J., Raeini Sarjaz, M., & Pirdashti, H. 2019. The effect of drought stress on the activity of antioxidant enzymes, malondialdehyde, soluble protein and leaf total nitrogen contents of soybean (Glycine max L.). Environmental Stresses in Crop Sciences, 12(1), 17-28. [In Persian]. http://dx.doi.org/10.22077/escs.2018.1243.1252
Bradford, S., & Letey, J. 1992. Simulation effects of water table and irrigation scheduling as factor in cotton production. Irrigation Science, 13, 101-107. https://doi.org/10.1007/BF00191051
Chance, B., & Maehly, A. C. 1995. Assay of catalase and peroxidases. Methods Enzymology, 2, 764-775. https://pubmed.ncbi.nlm.nih.gov/13193536/
Huseynova, M. I. 2012. Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochemical et Biophysical Acta, 1817, 1516–1523.
https://doi.org/10.1016/j.bbabio.2012.02.037
Jabbari, H., Akbari, A., Khosh kholgh Sima, N. A., Alahdadi, I., Shirani rad, A. H., Tabatabaee, S. A., & Hamed, A. Comparison of antioxidant enzymes and proline roles in drought tolerance of rapeseed (
Brassica napus L.). Journal of Oil Plants Production, 1 (1), 15-31. [In Persian].
http://yujs.yu.ac.ir/jopp/article-1-26-en.html
Jin, J., Ningwei, Sh., Jinhe, B., & Junping, G. 2006. Regulation of ascorbate peroxides at the transcript level is involved in tolerance to post harvest water deficit stress in the cut rose (Rose hybrida L.) cv. Samantha. Journal Agriculture Science Technology, 7, 90-103. https://agris.fao.org/agris-search/search.do?recordID=US201300744614
Kavas, M., Baloglu, C. B., Akca, O., Kose, F. S., & Gokcay, D. 2013. Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turkish Journal of Biology, 37, 491-498. https://doi.org/10.3906/biy-1210-55
Khademian, R., Ghorbani Nohooji, M., & Asghari, B. 2019. Effect of jasmonic acid on physiological and phytochemical attributes and antioxidant enzymes activity in safflower (Carthamus tinctorius L.) under water deficient. Journal of Medicinal Plants, 18 (72), 122-134. [In Persian]. http://jmp.ir/article-1-2707-en.html
Mafakheri, Kh., Valizadeh, V., & Mohammadi, S. A. 2022. Banding patterns activity of antioxidant enzymes and physiological indices in the maize (
Zea mays L.) genotypes under water deficit stress. Journal of Crop Breeding, 14 (43), 64-75. [In Persian].
http://jcb.sanru.ac.ir/article-1-1296-en.html
Moayedinezhad, A., Mohammadparast, B., Hosseini Salekdeh, Gh., Mohseni fard, E. & Ali Nejatian, M. 2020. Effects of drought stress on total phenolic, phenolic acids, polyamines and some organic acids in two important Iranian grapevine cultivars. Journal of Plant Process and Function, 8 (34), 19-26.
http://jispp.iut.ac.ir/article-1-1199-en.html
Ramachandra. R., chaitanya, K. V., Jutur, P. P., & Sumithra, K. 2004. Differential antioxidative response to weather stress among five mulberry cultivars. Environmental and Experimental Botany, 50 (1), 33-42. https://www.infona.pl/resource/bwmeta1.element.elsevier-72c9fb04-0e32-377b-ac19-8b44e852d065
Renu, K. C., & Devarshi, S. 2007. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 60 (2), 276–283.
https://doi.org/10.1016/j.envexpbot.2006.11.004
Saeidi, M., Ardalani, Sh., Jalali-Honarmand, S., Ghobadi, M. E., & Abdoli, M. 2018. Antioxidant enzyme responses and crop yield of wheat under drought stress and re-watering at vegetative growth period. Iranian Journal of Plant Physiology, 8 (1), 2257-2267. https://ijpp.saveh.iau.ir/article_539069_7061cf4f24cb266393f6fc69e0c9241b.pdf
Sayfzadeh, S., & Rashidi, M. 2010. Effect of drought stress on antioxidant enzyme activities and root yield of sugar beet (Beta vulgaris). American-Eurasian Journal Agriculture and Environment Science, 9 (3), 223-230. https://www.idosi.org/aejaes/jaes9(3)/1.pdf
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Haleem Abdul-Wajid, H., & Leonardo Battaglia, M. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants (Basel), 10 (2), 1-25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911879/
Shao, H. B., Liang, Z.S., & Shao, M. A. 2005. Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at maturation stage. Colloids and Surfaces B: Biointerfaces
, 45, 7–13. DOI:
10.1016/j.colsurfb.2005.02.007
Sharma, P., & Dubey, R. S. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46, 209- 221. https://link.springer.com/content/pdf/10.1007/s10725-005-0002-2.pdf
Taleahmad, S., & Hadad, R. 2010. Effect of silicon on antioxidant enzymes activities and osmotic adjustment contents in two bread wheat genotypes under drought stress conditions. Seed & Plant Production, 26 (2), 207-225. [In Persian]. http://www.ikiu.ac.ir/public-files/profiles/items/1303035322.pdf
Yang, J., & Zhang, J. 2006. Grain filling of cereals under soil drying. New Phytologist, 169, 223–236. https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.2005.01597.x
Yang, F., Zhang, J., Liu, Q., Liu, H., Zhou, Y., Yang, W., Ma, W. 2022. Improvement and re-evolution of tetraploid wheat for global environmental challenge and diversity consumption demand. International Journal of Molecular Sciences, 23, 1-23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878472/