Allen, R.D., 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant physiology 107, 1049-1065.
Alscher, R.G., Erturk, N., Heath, L.S., 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of experimental botany 53, 1331-1341.
Kliebenstein, D.J., Monde, R.-A., Last, R.L., 1998. Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant physiology 118, 637-650.
Mao, H., Chen, M., Su, Y., Wu, N., Yuan, M., Yuan, S., Brestic, M., Zivcak, M., Zhang, H., Chen, Y., 2018. Comparison on Photosynthesis and Antioxidant Defense Systems in Wheat with Different Ploidy Levels and Octoploid Triticale. International journal of molecular sciences 19, 300-306.
Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K., 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in plant science 5, 170.
Oberoi, H., Gupta, A., Kaur, S., Singh, I., 2014. Stage specific upregulation of antioxidant defence system in leaves for regulating drought tolerance in chickpea. Journal of Applied and Natural Science 6, 326-337.
Riasat, M., Kiani, S., Saed-Mouchehsi, A., Pessarakli, M., 2019. Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition. Journal of Plant Nutrition 42, 111-126.
Saed-Moucheshi, A., Heidari, B., Zarei, M., Emam, Y., Pessarakli, M., 2013. Changes in antioxidant enzymes activity and physiological traits of wheat cultivars in response to arbuscular mycorrhizal symbiosis in different water regimes. Iran Agricultural Research 31, 35-50.
Saed-Moucheshi, A., Pakniyat, H., Pirasteh-Anosheh, H., Azooz, M.M., 2014a. Role of ROS as signaling molecules in plants, In: Oxidative damage to plants. Elsevier, pp. 585-620.
Saed-Moucheshi, A., Pessarakli, M., Mikhak, A., Ostovar, P., Ahamadi-Niaz, A., 2017. Investigative approaches associated with plausible chemical and biochemical markers for screening wheat genotypes under salinity stress. Journal of Plant Nutrition 40, 2768-2784.
Saed-Moucheshi, A., Pessarakli, M., Mozafari, A.A., Sohrabi, F., Moradi, M., Marvasti, F.B., 2022. Screening barley varieties tolerant to drought stress based on tolerant indices. Journal of Plant Nutrition 45, 739-750.
Saed-Moucheshi, A., Razi, H., Dadkhodaie, A., Ghodsi, M., Dastfal, M., 2019. Association of biochemical traits with grain yield in triticale genotypes under normal irrigation and drought stress conditions. Australian Journal of Crop Science 13, 272-281.
Saed-Moucheshi, A., Shekoofa, A., Pessarakli, M., 2014b. Reactive oxygen species (ROS) generation and detoxifying in plants. Journal of Plant Nutrition 37, 1573-1585.
Saed-Moucheshi, A., Sohrabi, F., Fasihfar, E., Baniasadi, F., Riasat, M., Mozafari, A.A., 2021. Superoxide dismutase (SOD) as a selection criterion for triticale grain yield under drought stress: a comprehensive study on genomics and expression profiling, bioinformatics, heritability, and phenotypic variability. BMC plant biology 21, 1-19.
Shamloo-Dashtpagerdi, R., Razi, H., Aliakbari, M., Lindlöf, A., Ebrahimi, M., Ebrahimie, E., 2015. A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: Application to Arabidopsis. Journal of Theoretical Biology 364, 364-376.
Sheoran, S., Thakur, V., Narwal, S., Turan, R., Mamrutha, H., Singh, V., Tiwari, V., Sharma, I., 2018. Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Applied biochemistry biotechnology, Agronomy, Society 179, 1282-1298.
Tabarzad, A., Ayoubi, B., Riasat, M., Saed-Moucheshi, A., Pessarakli, M., 2017. Perusing biochemical antioxidant enzymes as selection criteria under drought stress in wheat varieties. Journal of Plant Nutrition 40, 2413-2420.
Tepperman, J.M., Dunsmuir, P., 1990. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant molecular biology 14, 501-511.
Vosough, A., Ghouchani, R., Saed-Moucheshi, A., 2015. Genotypic variation and heritability of antioxidant related traits in wheat landraces of Iran. Biological Forum 7, 43-47.
Wang, Y., Mandal, A.K., Son, Y.-O., Pratheeshkumar, P., Wise, J.T., Wang, L., Zhang, Z., Shi, X., Chen, Z.J.T., pharmacology, a., 2018. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. 353, 23-30.
Zhao, Q., Zhou, L., Liu, J., Du, X., Huang, F., Pan, G., Cheng, F., 2018. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiology Biochemistry 122, 90-101.
Żur, I., Dubas, E., Krzewska, M., Janowiak, F., Hura, K., Pociecha, E., Bączek-Kwinta, R., Płażek, A., 2014. Antioxidant activity and ROS tolerance in triticale (× Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell, Tissue Organ Culture 119, 79-94.