Arentzen, H. G. 2000. Comprehensive encyclopedia of agricultural sciences. Translation. Alavi, A. The first volume, publications of the Ministry of Jihad and Agriculture. 725 p. [in Persian].
Gilani, A. 2008. Determination of tolerance mechanisms and physiological effects of heat stress in Khuzestan rice cultivars. Doctoral thesis of the Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Ramin University of Agricultural Sciences and Natural Resources [in Persian].
Hu, W., Hu, G., & Han, B. 2009. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 176,583–590. doi: 10.1016/j.plantsci.2009.01.016.
Jan, M., Shah, G., Yuqing, H., Xuejiao, L., Peng, Z., Hao, D., Hao, C., & Jumin, T. 2021. Development of heat tolerant two-line hybrid rice restorer line carrying dominant locus of OsHTAS. Rice Science, 28(1), 99-108.
https://doi.org/10.1016/j.rsci.2020.11.011.
Lei, D. Y., Tan, L. B., Liu, F. X., Chen, L. Y., & Sun, C. Q. 2013. Identification of heat-sensitive QTL derived from common wild rice (
Oryza rufipogon Griff.). Plant Science, (201) 202, 121–127.
10.1016/j.plantsci.2012.12.001
Lesk, C., Rowhani, P., & Ramankutty, N. 2016. Influence of extreme weather disasters on global crop production. Nature, 529, 84–87.
Li, X., Lawas, L. M. F., Malo, R., Glaubitz, U., Erban, A., Mauleon, R., Heuer, S., Zuther, E., Kopka, J., Hincha, D. K., & Jagadish, K. S. V. 2015. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environmental 38: 2171–2192
Lindquist, S. 1986. The heat-shock response. Annual Review Biochemistry, 55, 1151–1191. doi: 10.1038/nature16467.
Liu, J., Zhang, C., Wei, C., Liu, X., Wang, M., Yu, F., Xie, Q., & Tu, J. 2016. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H
2O
2-induced stomatal closure in rice. Plant Physiology, 170, 429–443. doi:
10.1104/pp.15.00879.
Mande, M. & Maali Amiri R. 2017. Heat shock proteins and their role in abiotic stress. Modern Genetics, (6) 1, 16-5 [in Persian].
Montero-Barrientos, M.,
Hermosa, R.,
Cardoza R.E.,
Gutiérrez, S.,
Nicolás, C., &
Monte, E. 2010. Transgenic expression of the
Trichoderma harzianum HSP70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 167(8), 659-665. doi:10.1016/j.jplph.2009.11.012.
Moradi, F. 2015. Investigating the physiological effect of heat stress on 6 varieties of rice in Khuzestan. Master's thesis, Ramin Agricultural Research and Education Complex, Shahid Chamran University, Ahvaz. 138 p. [in Persian].
Nazari, M.R., Habibpour Mehraban, F., Maali Amiri, R., & Zeinali Khaneghah, H. 2010. A preliminary evaluation of response in desi chickpea genotypes for low temperature stress. Iranian Journal of Field Crop Science, 41 (4), 669-706.
20.1001.1.20084811.1389.41.4.6.1
Peet, M. M. , & Willits, D. H. 1998. The effect of night temperature on green house grown tomato yields in warm climate. Agricutural and Forestery Meteorology, 92, 191-202.
Rezazadeh, M., khodarahmpour, Z., & Gilani, A. 2016. Study of rice (Oryza sativa L.) lines tolerant to heat stress of IRRI by using multivariate statistical methods. Journal of Crop Production, 9(2): 35-55. doi: 10.22069/ejcp.2016.3115.
Schmittgen, T., Livak, D., & Kenneth, J. 2008. Analyzing real-time PCR data by the comparative (CT) method, Nature Protocols 3:1101–1108.
Timperio A.M.,
Egidi, M., &
Zolla, L. 2008. Proteomics applied on plant abiotic stresses: Role of Heat shock proteins (HSPs). Journal of Proteomics.71, 391-411. doi: 10.1016/j.jprot.2008.07.005.
Tompa, P., & Kovacs, D. 2010. Intrinsically disordered chaperones in plants and animals. Biochemistry and Cell Biology, 88, 167–174.
https://doi.org/10.1139/O09-163
Usman, M.G., Rafii, M.Y., Ismail, M.R., Martini, M.Y., Yusuff, O.A., & Miah, G. 2017. Molecular analysis of HSP70 mechanisms in plants and their function in response to stress. Biotechnology and Genetic Engineering Review. 33(1), 26-39. doi:10. 1080/02648725.2017.1340546.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. 2007. Heat tolerance in plants: an overview. Environmental and Experiment Botony, 61,199–223. http://dx.doi.org/10.1016/j.envexpbot.2007.05.011.
Yazdansepas, A. 2014. Breeding for resistance to abiotc stresses. Ministry of Jihad Agriculture, Organization of Research, Education and Promotion of Agriculture, Research Institute of Seed and Seedling Breeding.p.323 [in Persian].
Young, J.C. 2010. Mechanisms of the Hsp70 chaperone system. Biochemical and Cell Biology, 88, 291–300. doi: 10.1139/o09-175.
Zhao, C., Liu, B., Piao, S. L., Wang, X. H., Lobell, D. B., Huang, Y., Huang, M. T., Yao, Y. T., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Muller, C., Peng, S. S., Penuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D. H., Lium Z,, Zhu, Y., Zhu, Z. C., & Asseng, S. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceeding and Natural Academic Science USA, 114, 9326–9331. doi: 10.1073/pnas.1701762114