Assessment of biochemical diversity, oil content, and SDS-PAGE in different varieties and ecotypes of quinoa (Chenopodium quinoa)

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.

2 Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

3 Department of Plant Production and Genetics, Ilam University, Ilam, Iran.

10.22126/cbb.2025.10999.1079

Abstract

Introduction: Quinoa (Chenopodium quinoa willd.) is widely recognized as a nutrient-rich crop with exceptional nutritional value. Given its importance, it is crucial to assess the phytochemical diversity and oil content among different cultivars and genotypes to enhance our understanding of its nutritional and health-related properties.
Materials and methods: A completely randomised design (CRD) experiment was conducted on commercial cultivars (Atlas, Giza1, Red Carina) and various quinoa ecotypes (Q4, Q29, Q2, Q12, Q3, Q1) with three replications at Razi University during the 2023-2024 growing season. The evaluated traits included oil percentage, total soluble sugar content, total phenol content, total flavonoid content, and SDS-PAGE analysis.
Results: The analysis of variance for quinoa genotypes regarding the studied traits revealed a highly significant difference (at the 1% probability level) among different quinoa cultivars and ecotypes. Additionally, mean comparison results showed that ecotype Q4 had the highest total soluble sugar content (404.773 mg/L) and total flavonoid content (0.825 µg/L). Heatmap analysis categorized the cultivars and ecotypes into two distinct groups. The first group (Q1, Giza1, Red Carina, Q12) had the lowest values, while the second group (Q4, Q29, Atlas, Q2) exhibited the highest values for total soluble sugar, total phenol, and total flavonoid content. Correlation analysis showed a strong and highly significant positive correlation between total soluble sugar content and total phenol content (0.60**) as well as between total phenol content and total flavonoid content (0.60**).
Conclusion: Principal component analysis (PCA) indicated that the first two components accounted for 79.3% of the observed variations, suggesting that these two components explain a significant portion of the diversity among quinoa cultivars and ecotypes. This analysis highlighted the significant importance of total soluble sugar, total phenol, and total flavonoid content in this study. SDS-PAGE analysis of seed storage proteins revealed seven distinct protein bands within a molecular weight range of 20 to 70 kDa across the six ecotypes and three commercial cultivars. A single protein band with an approximate molecular weight of 40 kDa, constituting about 11% of the total bands, could serve as a stable genetic marker for quinoa.

Keywords

Main Subjects


Abd El-Moneim, D., ELsarag, E. I., Aloufi, S., El-Azraq, A. M., ALshamrani, S. M., Safhi, F. A. A., & Ibrahim, A. A. 2021. Quinoa (Chenopodium quinoa Willd.): genetic diversity according to ISSR and SCoT markers, relative gene expression, and morpho-physiological variation under salinity stress. Plants, 10(12), 2802.
Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M.W., Hamar, A., Khajehei, F., Graeff-Hönninger, S., &Piatti, C. 2020. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 9(2), https://doi.org/10.3390/foods9020216
Arguello-Hernández, P., Samaniego, I., Leguizamo, A., Bernalte-García, M.J., &Ayuso-Yuste, M.C. 2024. Nutritional and Functional Properties of Quinoa (Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition. Agriculture, 14(3), 396.  https://doi.org/10.3390/agriculture14030396
Bhardwaj, R., Yadav, R., Vishwakarma, H., Sharma, K., Chandora, R., Rana, J. C., &Riar, A. 2023. Agro‐morphological and nutritional assessment of chenopod and quinoa germplasm—Highly adaptable potential crops. Food Science & Nutrition, 11(9), 5446-5459. https://doi.org/10.1002/fsn3.3502
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Brinegar, C., Sine, B., &Nwokocha, L. 1996. High-cysteine 2S seed storage proteins from quinoa (Chenopodium quinoa). Journal of Agricultural and Food Chemistry, 44(7), 1621-1623. https://doi.org/10.1021/jf950830+
     Burrieza, H.P., Rizzo, A.J., Vale, E.M., Silveira, V., &Maldonado, S., 2019. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chemistry, (293),299-306. https://doi.org/10.1016/j.foodchem.2019.04.098
Cao, B., Bao, C., Zhu, Z., Gong, Y., Wei, J., Shen, Z., &Su, N. 2024. Comparative evaluation of chemical composition and nutritional characteristics in various quinoa sprout varieties: The superiority of 24-hour germination. Foods, 13(16), 2513. https://doi.org/10.3390/foods13162513
Chang, C.C., Yang, M.H., Wen, H.M., &Chern, J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 3.  https://doi.org/10.38212/2224-6614.2748
Deprá, M.C., Dias, R.R., Sartori, R.B., de Menezes, C.R., Zepka, L.Q., &Jacob-Lopes, E. 2022. Nexus on animal proteins and the climate change: The plant-based proteins are part of the solution? Food and Bioproducts Processing, (133),19-131. https://doi.org/10.1016/j.fbp.2022.03.006
Dostalíková, L., Hlásná Čepková, P., Janovská, D., Svoboda, P., Jágr, M., Dvořáček, V., & Viehmannová, I. 2023. Nutritional evaluation of quinoa genetic resources growing in the climatic conditions of central Europe. Foods, 12(7),1440. 10.3390/foods12071440
El-Harty, E. H., Ghazy, A., Alateeq, T. K., Al-Faifi, S. A., Khan, M. A., Afzal, M., &Migdadi, H. M. 2021. Morphological and molecular characterization of quinoa genotypes. Agriculture, 11(4), 286.
Ghobadi, M. & Norouzi, Y. 2024. Investigation the effects of planting dates on agro-physiological characteristics of quinoa (Chenopodium quinoa Willd) as a second crop in the climatic conditions of Kermanshah. Cereal Biotechnology and Biochemistry, 3(1), 74-94. https://doi.org/10.22126/cbb.2024.10354.1067. (In Persian)
Granado-Rodríguez, S., Vilariño-Rodríguez, S., Maestro-Gaitán, I., Matías, J., Rodríguez, M. J., Calvo, P, Cruz, V., Bolaños, L., & Reguera, M. 2021. Genotype-dependent variation of nutritional quality-related traits in quinoa seeds. Plants, 10(10), 2128.
Hlásná Cepková, P., Dostalíková, L., Viehmannová, I., Jágr, M., & Janovská, D. 2022. Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. Frontiers in Sustainable Food Systems, 6,960159. https://doi.org/10.3389/fsufs.2022.960159
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
Liu, S., Xie, Y., Li, B., Li, S., Yu, W., Ye, A. & Guo, Q. 2023. Structural properties of quinoa protein isolate: impact of neutral to high alkaline extraction pH. Foods, 12(13), 2589. https://doi.org/10.3390/foods12132589 
Majidi-Mehr, A., Pahlavani, M., Zaynali-Nezhad, K., Karimizadeh, R., & Börner, A. (2023). Studying the population structure of spring wheat genotypes and analysis of marker-trait association under water deficit conditions. Journal of Crop Breeding, 15(48), 164-177. (In-Persian).
Matías, J., Rodríguez, M. J., Granado-Rodríguez, S., Cruz, V., Calvo, P., & Reguera, M. 2022. Changes in quinoa seed fatty acid profile under heat stress field conditions. Frontiers in Nutrition, 9, 820010. https://doi.org/10.3389/fnut.2022.820010.
Najafinezhad, H., Koohi, N., & Darvishi, D. 2022. Evaluation of grain yield and quality of quinoa cultivars as affected by planting date and plant density in Jupar region of Kerman. Iranian Journal of Field Crop Science, 53(1), 113-129. (In-Persian).
Pandjaitan, N., Howard, L.R., Morelock, T., & Gil, M.I., 2005. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. Journal of Agricultural and Food Chemistry, 53(22), 8618-8623. https://doi.org/10.1021/jf052077i.
Mortada, K.S., Ahmed, K.Z., Gehan, M.A., Abdelkader, E., & Ragab, R. A. 2023. SRAP and ISSR genetic markers and seed protein electrophoresis of some quinoa (Chenopodium quinoa Willd.) genotypes. Journal of Modern Research, 5(2),24-30. 10.21608/jmr.2023.175868.1097.
Rahimi, E., & Bagheri, M. 2020. Chemical, antioxidant, total phenolic and flavonoid components and antimicrobial effects of different species of quinoa seeds. Egyptian Journal of Veterinary Sciences, 51(1), 43-54. https://doi.org/10.21608/ejvs.2019.17122.1098.
Rasekhi Kazeruni, A., Zamani, M.R., Heidaryan Naeini, F., Rasekhi Kazeruni, A., Mansoorian, A.R., and & Salami, S. 2021. Evaluation of molecular and biochemical properties in quinoa varieties. Cellular and Molecular Research (Iranian Journal of Biology), 34(3),299-312. 20.1001.1.23832738.1400.34.3.7.8
Reguera, M., Conesa, C.M., Gil-Gómez, A., Haros, C.M., Pérez-Casas, M.Á., Briones-Labarca, V., Bolaños, L., Bonilla, I., Álvarez,
R., Pinto, K., & Mujica, Á. 2018. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 6, e4442. https://doi.org/10.7717/peerj.4442.
Saad-Allah, K.M., & Youssef, M.S. 2018. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants, 24(4), 617-629. https://doi.org/10.1007/s12298-018-0541-4.
Sheligl, H.Q. 1986. Die verwertung orgngischer souren durch chlorella lincht. Planta Journal, 47, 510-526. https://doi.org/10.1007/BF01935418.
Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S.E., & Milovanovic, M. 2012. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132-138. https://doi.org/10.1016/j.jcs.2011.10.010
Tabatabaei, I., Alseekh, S., Shahid, M., Leniak, E., Wagner, M., Mahmoudi, H., & Balazadeh, S. 2022. The diversity of quinoa morphological traits and seed metabolic composition. Scientific Data, 9(1), 323. https://doi.org/10.1038/s41597-022-01399-y.
Tarahi, M., & Ahmed, J. 2023. Recent advances in legume protein‐based colloidal systems. Legume Science, 5(4), e185. https://doi.org/10.1002/leg3.185.
Van de Vondel, J., Lambrecht, M.A., & Delcour, J.A., 2020. Osborne extractability and chromatographic separation of protein from quinoa (Chenopodium quinoa Willd.) wholemeal. Lwt- Food Science and Technology, 126, 109321. https://doi.org/10.1016/j.lwt.2020.109321.
Vilcacundo, R., Barrio, D., Carpio, C., García-Ruiz, A., Rúales, J., Hernández-Ledesma, B., & Carrillo, W. 2017. Digestibility of quinoa (Chenopodium quinoa Willd.) protein concentrate and its potential to inhibit lipid peroxidation in the Zebrafish larvae model. Plant Foods for Human Nutrition, 72(3), 294-300. https://doi.org/10.1007/s11130-017-0626-1.
Wang, X., Zhao, R., & Yuan, W. 2020. Composition and secondary structure of proteins isolated from six different quinoa varieties from China. Journal of Cereal Science, 95, 103036. https://doi.org/10.1016/j.jcs.2020.103036.
Xi, X., Fan, G., Xue, H., Peng, S., Huang, W., & Zhan, J. 2024. Harnessing the potential of quinoa: Nutritional profiling, bioactive components, and implications for health promotion. Antioxidants, 13(7), 829. https://doi.org/10.3390/antiox13070829.
Zeinalzadeh-Tabrizi, H., Mansouri, S., & Fallah-Toosi, A. 2021. Evaluation of seed yield stability of promising sesame lines using different parametric and nonparametric methods. Plant Genetic Researches, 8(1), 43-60. (In Persian).