Abd El-Moneim, D., ELsarag, E. I., Aloufi, S., El-Azraq, A. M., ALshamrani, S. M., Safhi, F. A. A., & Ibrahim, A. A. 2021. Quinoa (Chenopodium quinoa Willd.): genetic diversity according to ISSR and SCoT markers, relative gene expression, and morpho-physiological variation under salinity stress. Plants, 10(12), 2802.
Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M.W., Hamar, A., Khajehei, F., Graeff-Hönninger, S., &Piatti, C. 2020. Quinoa (
Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 9(2),
https://doi.org/10.3390/foods9020216
Arguello-Hernández, P., Samaniego, I., Leguizamo, A., Bernalte-García, M.J., &Ayuso-Yuste, M.C. 2024. Nutritional and Functional Properties of Quinoa (
Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition. Agriculture, 14(3), 396.
https://doi.org/10.3390/agriculture14030396
Bhardwaj, R., Yadav, R., Vishwakarma, H., Sharma, K., Chandora, R., Rana, J. C., &Riar, A. 2023. Agro‐morphological and nutritional assessment of chenopod and quinoa germplasm—Highly adaptable potential crops. Food Science & Nutrition, 11(9), 5446-5459
. https://doi.org/10.1002/fsn3.3502
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
https://doi.org/10.1016/0003-2697(76)90527-3
Brinegar, C., Sine, B., &Nwokocha, L. 1996. High-cysteine 2S seed storage proteins from quinoa (
Chenopodium quinoa). Journal of Agricultural and Food Chemistry, 44(7), 1621-1623.
https://doi.org/10.1021/jf950830+
Burrieza, H.P., Rizzo, A.J., Vale, E.M., Silveira, V., &Maldonado, S., 2019. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chemistry, (293),299-306.
https://doi.org/10.1016/j.foodchem.2019.04.098
Cao, B., Bao, C., Zhu, Z., Gong, Y., Wei, J., Shen, Z., &Su, N. 2024. Comparative evaluation of chemical composition and nutritional characteristics in various quinoa sprout varieties: The superiority of 24-hour germination. Foods, 13(16), 2513.
https://doi.org/10.3390/foods13162513
Chang, C.C., Yang, M.H., Wen, H.M., &Chern, J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 3.
https://doi.org/10.38212/2224-6614.2748
Deprá, M.C., Dias, R.R., Sartori, R.B., de Menezes, C.R., Zepka, L.Q., &Jacob-Lopes, E. 2022. Nexus on animal proteins and the climate change: The plant-based proteins are part of the solution?
Food and Bioproducts Processing, (133),19-131.
https://doi.org/10.1016/j.fbp.2022.03.006
Dostalíková, L., Hlásná Čepková, P., Janovská, D., Svoboda, P., Jágr, M., Dvořáček, V., & Viehmannová, I. 2023. Nutritional evaluation of quinoa genetic resources growing in the climatic conditions of central Europe. Foods, 12(7),1440. 10.3390/foods12071440
El-Harty, E. H., Ghazy, A., Alateeq, T. K., Al-Faifi, S. A., Khan, M. A., Afzal, M., &Migdadi, H. M. 2021. Morphological and molecular characterization of quinoa genotypes. Agriculture, 11(4), 286.
Ghobadi, M. & Norouzi, Y. 2024. Investigation the effects of planting dates on agro-physiological characteristics of quinoa (Chenopodium quinoa Willd) as a second crop in the climatic conditions of Kermanshah. Cereal Biotechnology and Biochemistry, 3(1), 74-94. https://doi.org/10.22126/cbb.2024.10354.1067. (In Persian)
Granado-Rodríguez, S., Vilariño-Rodríguez, S., Maestro-Gaitán, I., Matías, J., Rodríguez, M. J., Calvo, P, Cruz, V., Bolaños, L., & Reguera, M. 2021. Genotype-dependent variation of nutritional quality-related traits in quinoa seeds. Plants, 10(10), 2128.
Hlásná Cepková, P., Dostalíková, L., Viehmannová, I., Jágr, M., & Janovská, D. 2022. Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. Frontiers in Sustainable Food Systems, 6,960159. https://doi.org/10.3389/fsufs.2022.960159
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
Liu, S., Xie, Y., Li, B., Li, S., Yu, W., Ye, A. & Guo, Q. 2023. Structural properties of quinoa protein isolate: impact of neutral to high alkaline extraction pH. Foods, 12(13), 2589. https://doi.org/
10.3390/foods12132589
Majidi-Mehr, A., Pahlavani, M., Zaynali-Nezhad, K., Karimizadeh, R., & Börner, A. (2023). Studying the population structure of spring wheat genotypes and analysis of marker-trait association under water deficit conditions. Journal of Crop Breeding, 15(48), 164-177. (In-Persian).
Matías, J., Rodríguez, M. J., Granado-Rodríguez, S., Cruz, V., Calvo, P., & Reguera, M. 2022. Changes in quinoa seed fatty acid profile under heat stress field conditions. Frontiers in Nutrition, 9, 820010
. https://doi.org/10.3389/fnut.2022.820010.
Najafinezhad, H., Koohi, N., & Darvishi, D. 2022. Evaluation of grain yield and quality of quinoa cultivars as affected by planting date and plant density in Jupar region of Kerman. Iranian Journal of Field Crop Science, 53(1), 113-129. (In-Persian).
Pandjaitan, N., Howard, L.R., Morelock, T., & Gil, M.I., 2005. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. Journal of Agricultural and Food Chemistry, 53(22), 8618-8623.
https://doi.org/10.1021/jf052077i.
Mortada, K.S., Ahmed, K.Z., Gehan, M.A., Abdelkader, E., & Ragab, R. A. 2023. SRAP and ISSR genetic markers and seed protein electrophoresis of some quinoa (
Chenopodium quinoa Willd.) genotypes. Journal of Modern Research, 5(2),24-30.
10.21608/jmr.2023.175868.1097.
Rahimi, E., & Bagheri, M. 2020. Chemical, antioxidant, total phenolic and flavonoid components and antimicrobial effects of different species of quinoa seeds. Egyptian Journal of Veterinary Sciences, 51(1), 43-54.
https://doi.org/10.21608/ejvs.2019.17122.1098.
Rasekhi Kazeruni, A., Zamani, M.R., Heidaryan Naeini, F., Rasekhi Kazeruni, A., Mansoorian, A.R., and & Salami, S. 2021. Evaluation of molecular and biochemical properties in quinoa varieties. Cellular and Molecular Research (Iranian Journal of Biology), 34(3),299-312.
20.1001.1.23832738.1400.34.3.7.8
Reguera, M., Conesa, C.M., Gil-Gómez, A., Haros, C.M., Pérez-Casas, M.Á., Briones-Labarca, V., Bolaños, L., Bonilla, I., Álvarez,
R., Pinto, K., & Mujica, Á. 2018. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 6, e4442.
https://doi.org/10.7717/peerj.4442.
Saad-Allah, K.M., & Youssef, M.S. 2018. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants, 24(4), 617-629. https://doi.org/10.1007/s12298-018-0541-4.
Sheligl, H.Q. 1986. Die verwertung orgngischer souren durch chlorella lincht. Planta Journal, 47, 510-526. https://doi.org/10.1007/BF01935418.
Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., Jacobsen, S.E., & Milovanovic, M. 2012. Agronomical and nutritional evaluation of quinoa seeds (
Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132-138.
https://doi.org/10.1016/j.jcs.2011.10.010
Tabatabaei, I., Alseekh, S., Shahid, M., Leniak, E., Wagner, M., Mahmoudi, H., & Balazadeh, S. 2022. The diversity of quinoa morphological traits and seed metabolic composition. Scientific Data, 9(1), 323. https://doi.org/10.1038/s41597-022-01399-y.
Van de Vondel, J., Lambrecht, M.A., & Delcour, J.A., 2020. Osborne extractability and chromatographic separation of protein from quinoa (
Chenopodium quinoa Willd.) wholemeal. Lwt- Food Science and Technology, 126, 109321.
https://doi.org/10.1016/j.lwt.2020.109321.
Vilcacundo, R., Barrio, D., Carpio, C., García-Ruiz, A., Rúales, J., Hernández-Ledesma, B., & Carrillo, W. 2017. Digestibility of quinoa (Chenopodium quinoa Willd.) protein concentrate and its potential to inhibit lipid peroxidation in the Zebrafish larvae model. Plant Foods for Human Nutrition, 72(3), 294-300. https://doi.org/10.1007/s11130-017-0626-1.
Wang, X., Zhao, R., & Yuan, W. 2020. Composition and secondary structure of proteins isolated from six different quinoa varieties from China. Journal of Cereal Science, 95, 103036.
https://doi.org/10.1016/j.jcs.2020.103036.
Xi, X., Fan, G., Xue, H., Peng, S., Huang, W., & Zhan, J. 2024. Harnessing the potential of quinoa: Nutritional profiling, bioactive components, and implications for health promotion. Antioxidants, 13(7), 829.
https://doi.org/10.3390/antiox13070829.
Zeinalzadeh-Tabrizi, H., Mansouri, S., & Fallah-Toosi, A. 2021. Evaluation of seed yield stability of promising sesame lines using different parametric and nonparametric methods. Plant Genetic Researches, 8(1), 43-60. (In Persian).