Aalami, O., Azadi, P., Hadizadeh, H., Wilde, H.D., Karimian, Z., Nemati, H., & Samiei, L.2023. Melatonin strongly enhances the Agrobacterium-mediated transformation of carnation in nitrogen-depleted media. BMC Plant Biology, 23(1), p.316.
https://doi.org/10.1186/s12870-023-04325-5
Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. 2016. Liposome: Classification, preparation, & alications. Nanoscale Research Letter, 8, 102. http://www.nanoscalereslett.com/content/8/1/102
Allam, M.A., & Saker, M.M. 2017. Microprojectile Bombardment Transformation of Date Palm Using the Insecticidal Cholesterol Oxidase (ChoA) Gene. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Date Palm Biotechnology Protocols Volume I. Methods in Molecular Biology, vol 1637. Humana Press, New York, NY.
https://doi.org/10.1007/978-1-4939-7156-5-23
Amro, J., Black, C., Jemouai, Z., Rooney, N., Daneault, C., Zeytuni, N., Ruiz, M., Bui, K.H., & Baron, C. 2023. Cryo-EM structure of the Agrobacterium tumefaciens T-pilus reveals the importance of positive charges in the lumen. Structure, 31(4), .375-384.
https://doi.org/10.1186/s1
Anami, S., Njuguna, E., Coussens, G., Aesaert, S., & Lijsebettens, M.V. 20132020. Higher Plant Transformation: Principles & Molecular Tools. Internationa Journal of Developed Biology, 57, 483–494. 10.1080/01904167.2013.868483
Andrieu, A., Breitler, J.C., Siré, C., Meynard, D., Gantet, P. & Guiderdoni, E. 2012. An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice, 5, 1-12.
Ansari, W.A., Chandanshive, S.U., Bhatt, V., Nadaf, A.B., Vats, S., Katara, J.L., Sonah, H. & Deshmukh, R. 2020. Genome editing in cereals: aroaches, alications & challenges. International Journal of Molecular Sciences, 21(11), 4040.
https://doi.org/10.3390/ijms21114040
Arshad, M., & Asad, S. 2019. Embryogenic Calli Explants & Silicon Carbide Whisker-Mediated Transformation of Cotton (Gossypium hirsutum L.). Transgenic Cotton: Methods & Protocols, 75-91.
Asad, S., Mukhtar, Z., Nazir, F., Hashmi, J.A., Mansoor, S., Zafar, Y., & Arshad, M. 2008. Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) & regeneration of salt tolerant plants. Molecular Biotechnology, 40, 161-169. http://www.nanoscalereslett.com/content/8/1/102
Begemann, M.B., Gray, B.N., January, E., Gordon, G.C., He, Y., Liu, H., Wu, X., Brutnell, T.P., Mockler, T.C., & Oufattole, M. 2017. PreciseInsertion & Guided Editing of Higher Plant Genomes Using Cpf1 CRISPR Nucleases. Scientific Reports, 7, 11606.
https://doi.org/10.1186/s12870-023-04325-5
Belide, S., Vanhercke, T., Petrie, J.R., & Singh, S.P. 2017. Robust Genetic Transformation of Sorghum (
Sorghum bicolor L.) Using Differentiating Embryogenic Callus Induced from Immature Embryos. Plant Methods, 13, 109.
https://doi.org/10.1080/01904167.2022.2096467
Bian, Z., Li, S., Yang, R., Yin, J., Zhang, Y., Tu, Q., Fu, J., & Li, R. 2022. Development of a new recombineering system for Agrobacterium species. Alied & Environmental Microbiology, 88(5), .e02499-21.
http://www.nanoscalereslett.com/content/8/1/102
Bonawitz, N.D., Ainley, W.M., Itaya, A., Chennareddy, S.R., Cicak, T., Effinger, K., Jiang, K., Mall, T.K., Marri, P.R., & Samuel,J.P. 2019. Zinc Finger Nuclease-mediated Targeting of Multiple Transgenes to an Endogenous Soybean Genomic Locus viaNon-homologous End Joining. Plant Biotechnology Journal, 17, 750–761.
https://doi.org/10.1080/01904167.2022.2096467
Borges, F., &Martienssen, R.A. 2015. The expanding world of small RNAs in plants. Nature Reviews Molecular Cell Biology, 16(12), 727-741.
Brodersen, P. & Voinnet, O., 2006. The diversity of RNA silencing pathways in plants. Trends in Genetics, 22(5), 268-280.
Buiatti, M., Marcheschi, G., Venturo, R., Bettini, P., Bogani, P., Morpurgo, R., Nacmias, B., &Pellegrini, M.G. 1987. In vitro response to Fusarium elicitor & toxic substances in crosses between resistant & susceptible carnation cultivars. Plant Breeding, 98(4), 346-348.
Busov, V. B., Brunner, A. M., Meilan, R., Filichkin, S., Ganio, L., Gandhi, S., & Strauss, S. H. 2005. Genetic transformation: A powerful tool for dissection of adaptive traits in trees. New Phytologist, 167, 9–18.
https://doi.org/10.1186/s12870-023-04325-5
Butardo, V.M., Fitzgerald, M.A., Bird, A.R., Gidley, M.J., Flanagan, B.M., Larroque, O., Resurreccion, A.P., Laidlaw, H.K., Jobling, S.A., Morell, M.K., &Rahman, S. 2011. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA-and hairpin RNA-mediated RNA silencing. Journal of Experimental Botany, 62(14), 4927-4941.
Calabuig-Serna, A., Mir, R., Porcel, R., & Seguí-Simarro, J.M. 2023. The Highly Embryogenic Brassica napus DH4079 line is recalcitrant to Agrobacterium-mediated genetic transformation. Plants, 12(10), p.2008.
https://doi.org/10.1080/01904167.2022.2096467
Carroll, D. 2011. Genome engineering with zinc-finger nucleases. Genetics, 188(4), 773-782.
Čermák, T., Baltes, N.J., Čegan, R., Zhang, Y., &Voytas, D.F. 2015. High-frequency, precise modification of the tomato genome. Genome biology, 16, 1-15.
Chilton, M.D.M., & Que, Q. 2003. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant physiology, 133(3), 956-965.
http://www.nanoscalereslett.com/content/8/1/102
Chumakov, M.I., Rozhok, N.A., Velikov, V.A., Tyrnov, V.S. & Volokhina, I.V. 2006. Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russian Journal of Genetics, 42, 893-897.
https://doi.org/10.1134/S1022795406080072
Crossway, A., Oakes, J.V., Irvine, J.M., Ward, B., Knauf, V.C., & Shewmaker, C.K.1986. Integration of Foreign DNA Following Microinjection of Tobacco Mesophyll Protoplasts. Molecular Gene & Genetics, 202, 179–185.
https://doi.org/10.1186/s12870-023-04325-5
Das, D.K. 2018. Expression of a bacterial chitinase (ChiB) gene enhances resistance against Erysiphae polygoni induced powdery mildew disease in the transgenic black gram (
Vigna mungo L.)(cv. T9). American Journal of Plant Sciences, 9(8), 1759-1770.
https://doi.org/10.4236/ajps.2018.98128
Debernardi, J.M., Tricoli, D.M., Ercoli, M.F., Hayta, S., Ronald, P., Palatnik, J.F., & Dubcovsky, J. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 38(11), .1274-1279.
https://doi.org/10.1080/01904167.2022.2096467
Desiderio, F., Zarei, L., Licciardello, S., Cheghamirza, K., Farshadfar, E., Virzi, N., Sciacca, F., Bagnaresi, P., Battaglia, R., Guerra, D., Palumbo, M., Cattivelli, L., & Mazzucotelli, E. 2019. Genomic regions from an iranian landrace increase kernel size in durum wheat. Frontier in Plant Science, 10, 448-468. http://www.nanoscalereslett.com/content/8/1/102
Du, C., Chai, L.A., Liu, C., Si, Y., & Fan, H. 2022. Improved Agrobacterium tumefaciens-mediated transformation using antibiotics & acetosyringone selection in cucumber. Plant Biotechnology Reports, 16(1), .17-27. 10.1080/01904167.2013.868483
Du, H., Shen, X., Huang, Y., Huang, M., & Zhang, Z. 2016. Overexpression of vitreoscilla hemoglobin increases waterlogging tolerance in arabidopsis & maize. BMC Plant Biology, 16, 35. https://doi.org/10.1186/s12870-021-02919-5
Duan, X., Hou, Q., Liu, G., Pang, X., Niu, Z., Wang, X., Zhang, Y., Li, B., & Liang, R. 2018. Expression of Pinellia pedatisecta lectin gene in transgenic wheat enhances resistance to wheat aphids. Molecules, 23(4), 748.
http://www.nanoscalereslett.com/content/8/1/102
Elliott, C., Zhou, F., Spielmeyer, W., Panstruga, R., & Schulze-Lefert, P. 2002. Functional conservation of wheat & rice Mlo orthologs in defense modulation to the powdery mildew fungus. Molecular Plant-Microbe Interactions, 15(10), 1069-107
Fahim, M., Millar, A.A., Wood, C.C., &Larkin, P.J. 2012. Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnology Journal, 10(2), 150-163.
https://doi.org/10.1111/j.1467-7652.2011.00647.x
Fallahi, N., Tahmasebi, Z., & Zebarjadi, A. 2022. Effect of explant, type & concentration of hormone on callus induction & regeneration of two Iranian sesame (Sesamum indicum L.) cultivars. 10.1080/01904167.2013.868483
Fllahi, N., Zebarjadi, A., & Tahmasebi, Z. 2024. Optimization of effective factors in the transfer of FAD3 gene effective in omega-3 biosynthesis to two sesame cultivars. Modern Genetics Journal, 18(4), .377-388.
https://doi.org/10.1080/01904167.2022.2096467
Gao, S., Yang, Y., Wang, C., Guo, J., Zhou, D., Wu, Q., Su, Y., Xu, L., & Que, Y. 2016. Transgenic Sugarcane with a Cry1Ac Gene Exhibited Better Phenotypic Traits & Enhanced Resistance against Sugarcane Borer. PLoS ONE, 11, e0153929.
https://doi.org/10.1186/s12870-023-04325-5
Gasparis, S., Kała, M., Przyborowski, M., Orczyk, W. & Nadolska-Orczyk, A. 2017. Artificial microRNA-based specific gene silencing of grain hardness genes in polyploid cereals aeared to be not stable over transgenic plant generations. Frontiers in Plant Science, 7, 2017.
Gasparis, S., Orczyk, W., &Nadolska-Orczyk, A. 2013. Sina & Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina & Pinb in wheat. BMC Plant Biology, 13, 1-12.
https://doi.org/10.1186/1471-2229-13-190
Gasparis, S., Orczyk, W., Zalewski, W., & Nadolska-Orczyk, A. 2011. The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, & increases grain hardness. Journal of Experimental Botany, 62(11), 4025-4036.
https://doi.org/10.1093/jxb/err103
Ge, X., Xu, J., Yang, Z., Yang, X., Wang, Y., Chen, Y., Wang, P., & Li, F. 2023. Efficient genotype‐independent cotton genetic transformation & genome editing. Journal of Integrative Plant Biology, 65(4), 907-917.
https://doi.org/10.1186/s12870-021-02919-5
Gil‐Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sánchez‐León, S., Baltes, N.J., Starker, C., Barro, F., Gao, C., &Voytas, D.F. 2017. High‐efficiency gene targeting in hexaploid wheat using DNA replicons & CRISPR/Cas9. The Plant Journal, 89(6), 1251-1262.
https://doi.org/10.1111/tpj.13446
Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., & de Groot, M.J. 1999. Transformation of Aspergillus awamori by Agrobacterium tumefaciens–mediated homologous recombination. Nature Biotechnology, 17(6), .598-601.
http://www.nanoscalereslett.com/content/8/1/102
Grazziotin, M.A., Cabral, G.B., Ibrahim, A.B., Machado, R.B., & Aragão, F.J. 2020. Expression of the Arcelin 1 gene from Phaseolus vulgaris L. in cowpea seeds (Vigna unguiculata L.) confers bruchid resistance. Annals of Alied Biology, 176(3), 268-274. 10.1080/01904167.2013.868483
Hassan, M. Akram, Z. Ali, S. Ali, G.M. Zafar, Y. Shah, Z.H., & Alghabari, F. 2016. Whisker-Mediated Transformation of Peanut with Chitinase Gene Enhances Resistance to Leaf Spot Disease. Crop Breeding & Alied Biotechnology, 16, 108–114.
https://doi.org/10.1080/01904167.2022.2096467
Hayta, S., Smedley, M.A., Demir, S.U., Blundell, R., Hinchliffe, A., Atkinson, N., & Harwood, W.A. 2019. An efficient & reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15, .1-15. https://doi.org/10.1186/s12870-023-04325-5
Hensel, G., Himmelbach, A., Chen, W., Douchkov, D. K., & Kumlehn, J. 2011. Transgene expression systems in the Triticeae cereals. Journal of Plant Physiology, 168(1), 30-44.
Himmelbach, A., Liu, L., Zierold, U., Altschmied, L., Maucher, H., Beier, F., Schützendübel, A. 2010. Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. The Plant Cell, 22(3), 937-952.
Holm, P.B., Olsen, O., Schnorf, M., Brinch-Pedersen, H., & Knudsen, S. 2000. Transformation of barley by microinjection into isolated zygote protoplasts. Transgenic Research, 9, 21-32.
https://doi.org/10.1080/01904167.2022.2096467
Horsch, R.B., Fry, J.E., Hoffmann, N.L., Wallroth, M., Eichholtz, D., Rogers, S.G., & Fraley, R.T. 1985. A simple & general method for transferring genes into plants. Science, 227(4691), .1229-1231.
http://www.nanoscalereslett.com/content/8/1/102
Hu, Y., Lacroix, B.,& Citovsky, V. 2021. Modulation of plant DNA damage response gene expression during Agrobacterium infection. Biochemical & biophysical research communications, 554, .7-12. 10.1080/01904167.2013.868483
ISAAA. 2020 b. Brief 55–2019: Executive Summary. https://doi.org/10.1186/s12870-023-04325-5
Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343, 1247997.
https://doi.org/10.1126/science.1247997
Karmakar, S., Molla, K.A., Gayen, D., Karmakar, A., Das, K., Sarkar, S.N., Datta, K., & Datta, S.K. 2019. Development of a Rapid & Highly Efficient Agrobacterium -Mediated Transformation System for Pigeon Pea [
Cajanus cajan (L.) Millsp]. GM Crops Food, 10, 115–138.
https://doi.org/10.1080/01904167.2022.2096467
Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J., & Schroeder, A. 2018. Therapeutic nanoparticles penetrate leaves & deliver nutrients to agricultural crops. Scientific Reports, 8(1), .1-10. 10.1080/01904167.2013.868483
Kaur, A., Reddy, M.S., & Kumar, A. 2022. Heat shock enhanced Agrobacterium tumefaciens mediated T-DNA delivery to potato (
Solanum tuberosum L.). Journal of Plant Biochemistry & Biotechnology, 31(4), 853-863.
http://www.nanoscalereslett.com/content/8/1/102
Kausch, A.P., Nelson-Vasilchik, K., Hague, J., Mookkan, M., Quemada, H., Dellaporta, S., Fragoso, C., & Zhang, Z.J. 2019. Edit atWill:Genotype Independent Plant Transformation in the Era of Advanced Genomics & Genome Editing. Plant Science, 281, 186–205
. https://doi.org/10.1186/s12870-021-02919-5
Kawai, J., Kanazawa, M., Suzuki, R., Kikuchi, N., Hayakawa, Y., & Sekimoto, H. 2022. Highly efficient transformation of the model zygnematophycean alga Closterium peracerosum‐strigosum‐littorale complex by square‐pulse electroporation. New Phytologist, 233(1), .569-578.
https://doi.org/10.1080/01904167.2022.2096467
Kis, A., Tholt, G., Ivanics, M., Várallyay, É., Jenes, B. & Havelda, Z. 2016. Polycistronic artificial miRNA‐mediated resistance to W heat dwarf virus in barley is highly efficient at low temperature. Molecular Plant Pathology, 17(3), .427-437.
Kluepfel, D.A., McClean, A.E., Aradhya, M.K., & Moersfelder, J.W. 2014, April. Identification of Juglans wild relatives resistant to crown gall caused by Agrobacterium tumefaciens. In II International Symposium on Wild Relatives of Subtropical & Temperate Fruit & Nutrient Crops 1074 (. 87-94).
https://doi.org/10.1186/s12870-023-04325-5
Koetle, M.J., Finnie, J.F., Balázs, E., & Van Staden, J. 2015. A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. South African Journal of Botany, 98, .37-44.
http://www.nanoscalereslett.com/content/8/1/102
Koornneef, M. & Meinke, D. 2010. The development of Arabidopsis as a model plant. The Plant Journal, 61(6), .909-921.
Kumar, R., Mamrutha, H.M., Kaur, A., Venkatesh, K., Sharma, D., & Singh, G.P. 2019. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature & immature embryos. Molecular biology reports, 46(2), 1845-1853. 10.1080/01904167.2013.868483
Li, M., Wang, D., Long, X., Hao, Z., Lu, Y., Zhou, Y., Peng, Y., Cheng, T., Shi, J., & Chen, J. 2022. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L.
Chinense × L.
Tulipifera). Frontiers in Plant Science, 13, p.802128.
https://doi.org/10.1080/01904167.2022.2096467
Li, X., Yang, Q., Peng, L., Tu, H., Lee, L.Y., Gelvin, S.B., & Pan, S.Q. 2020. Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proceedings of the National Academy of Sciences, 117(42), .26389-26397.
https://doi.org/10.1186/s12870-021-02919-5
Liu, H., Zhao, J., Chen, F., Wu, Z., Tan, J., Nguyen, N.H., Cheng, Z., & Weng, Y. 2023. Improving Agrobacterium tumefaciens− mediated genetic transformation for gene function studies & mutagenesis in cucumber (
Cucumis sativus L.).
Genes,
14(3), p.601.
https://doi.org/10.1080/01904167.2021.1963773
Liu, K., Gao, Y., Li, Z.H., Liu, M., Wang, F.Q., & Wei, D.Z. 2022. CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum. New Biotechnology, 66, .61-69. 10.1080/01904167.2013.868483
Lorz, H., Paszkowski, J., Dierks-Ventling, C., & Potrykus, I. 1981. Isolation & Characterization of Cytoplasts & Miniprotoplasts Derived from Protoplasts of Cultured Cells. Physiology of Plant, 53, 385–391.
https://doi.org/10.1186/s12870-023-04325-5
Lu, Y., Tian, Y., Shen, R., Yao, Q., Wang, M., Chen, M., Dong, J., Zhang, T., Li, F., Lei, M. & Zhu, J.K. 2020. Targeted, efficient sequence insertion & replacement in rice. Nature Biotechnology, 38(12), .1402-1407.
Lv, Q., Chen, C., Xu, Y., Hu, S., Wang, L., Sun, K., Chen, X., & Li, X. 2017. Optimization of Agrobacterium tumefaciens-mediated transformation systems in tea plant (
Camellia sinensis). Horticultural Plant Journal, 3(3), 105-109.
https://doi.org/10.1080/01904167.2022.2096467
Masani, M.Y.A., Noll, G.A., Parveez, G.K.A., Sambanthamurthi, R., & Prüfer, D. 2014. Efficient transformation of oil palm protoplasts by PEG-mediated transfection & DNA microinjection. PloS One, 9(5), p.e96831.
https://doi.org/10.1186/s12870-021-02919-5
Masters, A., Kang, M., McCaw, M., Zobrist, J.D., Gordon-Kamm, W., Jones, T, & Wang, K. 2020. Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. Journal of Visualized Experiments. 10(156), 60-78.
https://doi.org/10.1080/01904167.2022.2096467
Melchiorre, M., Robert, G., Trii, V., Racca, R., & Lascano, H. R. 2009. Superoxide dismutase & glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance & changes in cellular redox state. Plant Growth Regulation, 57(1), 57-68.
Miroshnichenko, D., Ashin, D., Pushin, A., & Dolgov, S. 2018. Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species. BMC Biotechnology, 18, 1-13. 10.1080/01904167.2013.868483
Mizuno, K., Takahashi, W., Ohyama, T., Shimada, T., & Tanaka, O. 2004. Improvement of the Aluminum Borate Whisker-Mediated Method of DNA Delivery into Rice Callus. Plant Production Science, 7, 45–49.
https://doi.org/10.1080/01904167.2022.2096467
Mohanta, D., Patnaik, S., Sood, S., &Das, N. 2019. Carbon nanotubes: Evaluation of toxicity at biointerfaces. Journal of Pharmaceutical Analysis, 9(5), 293-300.
Moiseeva, Y.M., Velikov, V.A., Volokhina, I.V., Gusev, Y.S., Yakovleva, O.S. & Chumakov, M.I. 2014. Agrobacterium-mediated transformation of maize with antisense suression of the proline dehydrogenase gene by an in planta method. British Biotechnology Journal, 4, 116-125.
http://www.sciencedomain.org/abstract.php?iid=364&id=11&aid=2706
Naseri, G., Sohani, M.M., Pourmassalehgou, A. & Allahi, S. 2012. In planta transformation of rice (Oryza sativa) using thaumatin-like protein gene for enhancing resistance to sheath blight. African Journal of Biotechnology, 11(31), .7885-7893.
National Academy of Sciences, 113, 1949–1954. 10.1080/01904167.2013.868483
Ning, W., Zhai, H., Yu, J., Liang, S., Yang, X., Xing, X., Huo, J., Pang, T., Yang, Y., & Bai, X. 2017. Overexpression of Glycine soja WRKY20 enhances drought tolerance & improves plant yields under drought stress in transgenic soybean. Molecular Breeding, 37, 1-10.
https://doi.org/10.1080/01904167.2021.1963773
Ossowski, S., Schwab, R., &Weigel, D., 2008. Gene silencing in plants using artificial microRNAs & other small RNAs. The Plant Journal, 53(4), 674-690.
Ossowski,S.,Schwab,R.,andWeigel,D.(2008).Genesilencinginplantsusing artificial micro RNA sand other smallRNAs. Plant Journal. 53, 674–690. doi: 10.1111/ j.1365-313X.2007.03328.x
Ramkumar, T.R., Lenka, S.K., Arya, S.S., & Bansal, K.C. 2020. A Short History & Perspectives on Plant Genetic Transformation. In Biolistic DNA Delivery in Plants; Rustgi, S., Luo, H., Eds.; Humana: New York, NY, USA, . 39–68. 10.1080/01904167.2013.868483
Razzaq, A., Hafiz, I.A., Mahmood, I. & Hussain, A. 2011. Development of in planta transformation protocol for wheat. African Journal of Biotechnology, 10(5), p.740.
Reddy, S.S.S., Singh, B., Peter, A.J., & Rao, T.V. 2019. Genetic transformation of indica rice varieties involving Am-SOD gene for improved abiotic stress tolerance. Saudi Journal of Biological Sciences, 26(2), 294-300.
https://doi.org/10.1080/01904167.2022.2096467
Rod-In, W., Sujipuli, K. & Ratanasut, K. 2014. The floral-dip method for rice (Oryza sativa) transformation.
Rogers, K., &Chen, X., 2013. Biogenesis, turnover, & mode of action of plant microRNAs. The Plant Cell, 25(7), 2383-2399.
Saed-Moucheshi A., & Mozafari A. A. 2022. Alternate gene expression profiling of monoterpenes in Hymenocrater longiflorus as a novel pharmaceutical plant under water deficit. Scientific Reports, 12(1): 4084. 10.1080/01904167.2013.868483
Saed-Moucheshi A., & Safari H. 2023a. Investigation of regulatory elements related to superoxide dismutase enzyme genes in wheat. Cereal Biotechnology & Biochemistry, 1(3) 23-38. 10.1080/01904167.2013.868483
Saed-Moucheshi A., & Safari H. 2023b. Superoxide dismutase enzyme expression in root & shoot of triticale seedlings under drought stress conditions. Cereal Biotechnology & Biochemistry, 1: 581-595. http://www.nanoscalereslett.com/content/8/1/102
Saed-Moucheshi A., Sohrabi F., Fasihfar E., Baniasadi F., Riasat M., Mozafari A. A. 2021. Superoxide dismutase (SOD) as a selection criterion for triticale grain yield under drought stress: a comprehensive study on genomics & expression profiling, bioinformatics, heritability, & phenotypic variability. BMC Plant Biology, 21: 1-19. 10.1080/01904167.2013.868483
Saeed, T., & Shahzad, A.2016. Basic principles behind genetic transformation in plants. in biotechnological strategies for the conservation of medicinal & ornamental climbers; Shahzad, A., Sharma, S., iddiqui, S., Eds.; Springer: Cham, Switzerland, . 327–350.
https://doi.org/10.1080/01904167.2022.2096467
Schiml, S., Fauser, F., & Puchta, H. 2014. The CRISPR/C as system can be used as nuclease for in planta gene targeting & as paired nickases for directed mutagenesis in A rabidopsis resulting in heritable progeny. The Plant Journal, 80(6), .1139-1150.
https://doi.org/10.1111/tpj.12704
Shi, J., Gao, H., Wang, H., Lafitte, H.R., Archibald, R.L., Yang, M., Hakimi, S.M., Mo, H. & Habben, J.E. 2017. ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207-216.
https://doi.org/10.1111/pbi.12603
Shimizu-Sato, S., Tsuda, K., Nosaka-Takahashi, M., Suzuki, T., Ono, S., Ta, K.N., Yoshida, Y., Nonomura, K.I., & Sato, Y. 2020. Agrobacterium-mediated genetic transformation of wild Oryza species using immature embryos. Rice, 13, 1-13. https://doi.org/10.1186/s12870-021-02919-5
Shreni Agrawal, E.R.. 2022. A review: Agrobacterium-mediated gene transformation to increase plant productivity. The Journal of Phytopharmacology, 11, p.111. 10.1080/01904167.2013.868483
Sohrabi F.,& Saed-Moucheshi A. 2023. Investigation of NAD (P) H oxidase genes regulatory elements in wheat. Cereal Biotechnology & Biochemistry, 2, 98-117. 10.1080/01904167.2013.868483
Song, C., Lu, L., Guo, Y., Xu, H., & Li, R. 2019. Efficient Agrobacterium-mediated transformation of the commercial hybrid poplar Populus Alba× Populus glandulosa Uyeki. International Journal of Molecular Sciences, 20(10), p.2594.
http://www.nanoscalereslett.com/content/8/1/102
Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakajima, T., Haramoto, N., Nozue, M. & Kojima, M. 2006. Development of simple & efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. Journal of Bioscience & Bioengineering, 102(3), .162-170.
Supartana, P., Shimizu, T., Shioiri, H., Nogawa, M., Nozue, M. & Kojima, M. 2005. Development of simple & efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. Journal of Bioscience & Bioengineering, 100(4), .391-397.
Teo, Y.L., 2022. Engineering of plasmid vectors for enhancing agrobacterium-mediated plant transformation (Doctoral Dissertation, UTAR). 10.1080/01904167.2013.868483
Thagun, C., Chuah, J.A. & Numata, K. 2019. Targeted gene delivery into various plastids mediated by clustered cell‐penetrating & chloroplast‐targeting peptides. Advanced Science, 6(23), 1902064.
Travella, S., Klimm, T.E. & Keller, B. 2006. RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiology, 142(1), .6-20.
van Wordragen, M., Shakya, R., Verkerk, R., Peytavis, R., van Kammen, A., & Zabel, P. 1997. Liposome-Mediated Transfer of YAC DNA to Tobacco Cells. Plant Molecular & Biology Report, 15, 170–178.
https://doi.org/10.1080/01904167.2021.1963773
Veena, Jiang, H., Doerge, R.W., & Gelvin, S.B. 2003. Transfer of T‐DNA & Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation & suresses host defense gene expression. The Plant Journal, 35(2), .219-236.
https://doi.org/10.1186/s12870-021-02919-5
Wen, S.S., Ge, X.L., Wang, R., Yang, H.F., Bai, Y.E., Guo, Y.H., Zhang, J., Lu, M.Z., Zhao, S.T., & Wang, L.Q. 2022. An efficient agrobacterium-mediated transformation method for hybrid poplar 84K (Populus alba× P. glandulosa) using calli as explants. International Journal of Molecular Sciences, 23(4), 2216. http//:www.10.1080/01904167.2013.868483
Woodward, A.W. & Bartel, B.18. Biology in bloom: a primer on the Arabidopsis thaliana model system. Genetics, 208(4), .1337-1349.
Wright, D.A., Townsend, J.A., Winfrey Jr, R.J., Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D. & Voytas, D.F. 2005. High‐frequency homologous recombination in plants mediated by zinc‐finger nucleases. The Plant Journal, 44(4), .693-705.
Wu, H., Acanda, Y., Jia, H., Wang, N., & Zale, J. 2016. Biolistic transformation of Carrizo citrange (
Citrus sinensis Osb.×
Poncirus trifoliata L. Raf.). Plant Cell Reports, 35, .1955-1962.
http://www.nanoscalereslett.com/content/8/1/102
Yang, A., Su, Q.,& An, L. 2009. Ovary-drip transformation: a simple method for directly generating vector-and marker-free transgenic maize (
Zea mays L.) with a linear GFP cassette transformation. Planta, 229, .793-801.
https://doi.org/10.1080/01904167.2022.2096467
Ye, X., Shrawat, A., Moeller, L., Rode, R., Rivlin, A., Kelm, D., Martinell, B.J., Williams, E.J., Paisley, A., Duncan, D.R., & Armstrong, C.L. 2023. Agrobacterium-mediated direct transformation of wheat mature embryos through organogenesis. Frontiers in Plant Science, 14, p.1202235. 10.1080/01904167.2013.868483
Zahedi M. B., Hooman R., & Saed-Moucheshi A. 2016. Evaluation of antioxidant enzymes, lipid peroxidation & proline content as selection criteria for grain yield under water deficit stress in barley. Journal of Alied Biological Sciences, 8: 71-78.
http://www.nanoscalereslett.com/content/8/1/102
Zale, J.M., Agarwal, S., Loar, S. and Steber, C.M. 2009. Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Reports, 28, .903-913. http://www .DOI 10.1007/s00299-009-0696-0