Bioactive compounds of germinated brown rice and its role in human health

Document Type : Review

Author

Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

Abstract

Introduction: Despite the high nutritional value of brown rice and its positive effects on health, its consumption in Iran is much lower than that of milled or white rice because milled rice has better cooking and eating quality and its texture is softer and more desirable. The germination process has received much attention to reduce the aforementioned problems. Germinated brown rice has a softer texture, is more flavorful, and requires less cooking time. The germination process can change the physicochemical properties, including the digestibility of germinated brown rice. Gamma-aminobutyric acid, gamma-oryzanol, phenolic compounds, dietary fiber, free amino acids, vitamins B and E, and minerals are the major bioactive compounds that increase in the production of germinated brown rice. Specifically, the amount of gamma-aminobutyric acid in germinated brown rice is ten times higher than in milled rice and twice as high as in brown rice. The consumption of germinated brown rice has garnered increasing attention among health-conscious consumers worldwide, with scientific evidence supporting its beneficial effects on health by reducing the risk of obesity, cardiovascular disease, type 2 diabetes, and neurological disorders.
Materials and methods: This article is a review article that was obtained through content analysis, which involved systematically searching for keywords related to brown rice, germination, improving the nutritional value of rice, and the effect of germination on health in articles from reputable websites, including Web of Science, Google Scholar, PubMed, and Scopus.
Results: This article attempts to encourage the use of germinated brown rice among Iranian consumers by reviewing various germination methods to eliminate the disadvantages of cooking brown rice and enhance its nutritional value. According to numerous studies and practical examples provided in reliable sources, the rice germination process has been confirmed to increase the production of nutritional compounds, including macronutrients, micronutrients (vitamins and minerals), gamma-aminobutyric acid, gamma-oryzanol, dietary fiber, amino acids, and bioactive compounds. Improving quality traits through germination could provide an alternative nutritious rice for the food industry. These changes probably occur due to the partial hydrolysis of starch, non-starch polysaccharides, and proteins during germination, which are converted into sugars, oligosaccharides, and amino acids. These changes increase the biological content and improve the texture and flavor of germinated brown rice.
Conclusion: Germinated brown rice is gaining popularity worldwide as a healthy food option. Therefore, it is suggested that Iranian consumers consider the consumption of germinated brown rice, as many scientific studies confirm its beneficial effects on health.

Keywords

Main Subjects


Babu, P.D., Subhasree, R., Bhakyaraj, R. & Vidhyalakshmi, R. 2009. Brown rice-beyond the color reviving a lost health food-a review. Magnesium, 187(13.10), pp.67-72.  http://dx.doi.org/10.17582/journal.pjar/2020/33.3.445.453.
Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F. & Galieni, A. 2019. Sprouted grains: A comprehensive review. Nutrients, 11(2), p.421. https://doi.org/10.3390/nu11020421.
Caceres, P.J., Martinez-Villaluenga, C., Amigo, L., & Frias, J. 2014. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food chemistry, 152, pp.407-414. https://doi.org/10.1016/j.foodchem.2013.11.156.
Chaijan, M. & Panpipat, W. 2020. Nutritional composition and bioactivity of germinated Thai indigenous rice extracts: A feasibility study. Plos one, 15(8), p.e0237844. https://doi.org/10.1371/journal.pone.0237844.
Chalermchaiwat, P., Jangchud, K., Jangchud, A., Charunuch, C. & Prinyawiwatkul, W. 2015. Antioxidant activity, free gamma-aminobutyric acid content, selected physical properties and consumer acceptance of germinated brown rice extrudates as affected by extrusion process. LWT-Food Science and Technology, 64(1), pp.490-496. https://doi.org/10.1016/j.lwt.2015.04.066.
Chaiyasut, C., Sivamaruthi, B.S., Pengkumsri, N., Saelee, M., Kesika, P., Sirilun, S., Fukngoen, P., Jampatip, K., Khongtan, S. & Peerajan, S. 2017. Optimization of conditions to achieve high content of gamma amino butyric acid in germinated black rice, and changes in bioactivities. Food Science and Technology, 37(suppl 1), pp.83-93. https://doi.org/10.1590/1678-457X.33416.
Chen, H.H., Chang, H.C., Chen, Y.K., Hung, C.L., Lin, S.Y. & Chen, Y.S. 2016. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food chemistry, 191, pp.120-127.  https://doi.org/10.1016/j.foodchem.2015.01.083.
Chinma, C.E., Anuonye, J.C., Simon, O.C., Ohiare, R.O. & Danbaba, N. 2015. Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Food chemistry, 185, pp.454-458. https://doi.org/10.1016/j.foodchem.2015.04.010.
Cho, D.H. & Lim, S.T. 2016. Germinated brown rice and its bio-functional compounds. Food Chemistry, 196, pp.259-271. https://doi.org/10.1016/j.foodchem.2015.09.025.
Chung, H.J., Cho, A. & Lim, S.T. 2014. Utilization of germinated and heat-moisture treated brown rices in sugar-snap cookies. LWT-Food Science and Technology, 57(1), pp.260-266. https://doi.org/10.1016/j.lwt.2014.01.018.
Chung, H.J., Cho, D.W., Park, J.D., Kweon, D.K. & Lim, S.T. 2012. In vitro starch digestibility and pasting properties of germinated brown rice after hydrothermal treatments. Journal of Cereal Science, 56(2), pp.451-456. https://doi.org/10.1016/j.jcs.2012.03.010.
Chungcharoen, T., Prachayawarakorn, S., Tungtrakul, P. & Soponronnarit, S. 2014. Effects of germination process and drying temperature on gamma-aminobutyric acid(GABA) and starch digestibility of germinated brown rice. Drying Technology, 32(6), pp.742-753. https://doi.org/10.1080/07373937.2013.879387.
Chungcharoen, T., Prachayawarakorn, S., Tungtrakul, P. & Soponronnarit, S. 2015. Effects of germination time and drying temperature on drying characteristics and quality of germinated paddy. Food and bioproducts processing, 94, pp.707-716. https://doi.org/10.1016/j.fbp.2014.09.013.
Cornejo, F. & Rosell, C.M. 2015. Influence of germination time of brown rice in relation to flour and gluten free bread quality. Journal of food science and technology, 52, pp.6591-6598. https://doi.org/10.1007/s13197-015-1720-8.
Ding, J., Ulanov, A.V., Dong, M., Yang, T., Nemzer, B.V., Xiong, S., Zhao, S. & Feng, H. 2018. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication. Ultrasonics sonochemistry, 40, pp.791-797. https://doi.org/10.1016/j.ultsonch.2017.08.029.
Donkor, O.N., Stojanovska, L., Ginn, P., Ashton, J. & Vasiljevic, T. 2012. Germinated grains–Sources of bioactive compounds. Food chemistry, 135(3), pp.950-959. https://doi.org/10.1016/j.foodchem.2012.05.058.
Ebizuka, H., Ihara, M. & Arita, M. 2009. Antihypertensive effect of pre-germinated brown rice in spontaneously hypertensive rats. Food Science and Technology Research, 15(6), pp.625-630.  https://doi.org/10.3136/fstr.15.625.
Esa, N.M., Kadir, K.K.A., Amom, Z. & Azlan, A. 2013. Antioxidant activity of white rice, brown rice and germinated brown rice(in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits. Food chemistry, 141(2), pp.1306-1312. https://doi.org/10.1016/j.foodchem.2013.03.086.
Espirito Santo Pereira, A., Caixeta Oliveira, H., Fernandes Fraceto, L. & Santaella, C., 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), p.267. https://doi.org/10.3390/nano11020267.
Estruch, R., Martinez-Gonzalez, M.A., Corella, D., Basora-Gallisá, J., Ruiz-Gutierrez, V., Covas, M.I., Fiol, M., Gómez-Gracia, E., Lopez-Sabater, M.C., Escoda, R. & Pena, M.A. 2009. Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. Journal of Epidemiology & Community Health, 63(7), pp.582-588. https://doi.org/10.1136/jech.2008.082214.
Hsu, T.F., Kise, M., Wang, M.F., Ito, Y., Yang, M.D., Aoto, H., Yoshihara, R., Yokoyama, J., Kunii, D. & Yamamoto, S., 2008. Effects of pre-germinated brown rice on blood glucose and lipid levels in free-living patients with impaired fasting glucose or type 2 diabetes. Journal of nutritional science and vitaminology, 54(2), pp.163-168. https://doi.org/10.3177/jnsv.54.163.
Ito, Y., Mizukuchi, A., Kise, M., Aoto, H., Yamamoto, S., Yoshihara, R. & Yokoyama, J. 2005. Postprandial blood glucose and insulin responses to pre-germinated brown rice in healthy subjects. The Journal of Medical Investigation, 52(3, 4), pp.159-164. https://doi.org/10.2152/jmi.52.159.
Jayadeep, A. & Malleshi, N.G. 2011. Nutrients, composition of tocotrienols, tocopherols, and γ-oryzanol, and antioxidant activity in brown rice before and after biotransformation Nutrientes, composición de tocotrienoles, tocoferoles y γ-oryzanol, y actividad antioxidante del arroz integral antes y después de la biotransformación. CyTA-Journal of Food, 9(1), pp.82-87. https://doi.org/10.1080/19476331003686866.
Jiamyangyuen, S. & Ooraikul, B. 2008. The physico-chemical, eating and sensorial properties of germinated brown rice. Journal of Food Agriculture and Environment, 6(2), p.119.
Kayahara, H., Tsukahara, K. & Tatai, T. 2001. Flavor, health and nutritional quality of pre-germinated brown rice. https://doi.org/10.1039/9781847550859-00546.
Kendall, C.W., Esfahani, A. & Jenkins, D.J. 2010. The link between dietary fibre and human health. Food hydrocolloids, 24(1), pp.42-48. https://doi.org/10.1016/j.foodhyd.2009.08.002.
Kim, H.Y., Hwang, I.G., Kim, T.M., Woo, K.S., Park, D.S., Kim, J.H., Kim, D.J., Lee, J., Lee, Y.R. & Jeong, H.S. 2012. Chemical and functional components in different parts of rough rice(Oryza sativa L.) before and after germination. Food chemistry, 134(1), pp.288-293. https://doi.org/10.1016/j.foodchem.2012.02.138.
Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. & Kimura, T. 2007. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. Journal of food engineering, 78(2), pp.556-560. https://doi.org/10.1016/j.jfoodeng.2005.10.036.
Lekjing, S. & Venkatachalam, K. 2020. Effects of germination time and kilning temperature on the malting characteristics, biochemical and structural properties of HomChaiya rice. RSC advances, 10(28), pp.16254-16265 https://doi.org/10.1039/d0ra01165.
Lemmens, E., Moroni, A.V., Pagand, J., Heirbaut, P., Ritala, A., Karlen, Y., Le, K.A., Van den Broeck, H.C., Brouns, F.J., De Brier, N. & Delcour, J.A. 2019. Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Comprehensive reviews in food science and food safety, 18(1), pp.305-328. https://doi.org/10.1111/1541-4337.12414.
Lin, Y.T., Pao, C.C., Wu, S.T. & Chang, C.Y. 2015. Effect of different germination conditions on antioxidative properties and bioactive compounds of germinated brown rice. BioMed Research International, 2015(1), p.608761. https://doi.org/10.1155/2015/608761.
Mahakham, W., Sarmah, A.K., Maensiri, S. & Theerakulpisut, P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific reports, 7(1), p.8263. https://doi.org/10.1038/s41598-017-08669-5.
Morita, N., Maeda, T., Watanabe, M. & Yano, S. 2007. Pre-germinated brown rice substituted bread: dough characteristics and bread structure. International Journal of Food Properties, 10(4), pp.779-789.    https://doi.org/10.1080/10942910601183643.
Oh, S.H. 2003. Stimulation of γ-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. BMB Reports, 36(3), pp.319-325. https://doi.org/10.5483/BMBRep.2003.36.3.319.
Oh, S.H., Soh, J.R. & Cha, Y.S. 2003. Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. Journal of medicinal food, 6(2), pp.115-121. https://doi.org/10.1089/109662003322233512.
Ohtsubo, K.I., Suzuki, K., Yasui, Y. & Kasumi, T. 2005. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of food composition and analysis, 18(4), pp.303-316. https://doi.org/10.1016/j.jfca.2004.10.003.
Parnsahkorn, S. & Langkapin, J. 2013. Changes in physicochemical characteristics of germinated brown rice and brown rice during storage at various temperatures. Agricultural Engineering International: CIGR Journal, 15(2), pp.293-303. https://doi.org/10.1111/j.1365-2621.2011.02893.x.
Patil, S.B. & Khan, M.K. 2011. Germinated brown rice as a value-added rice product: A review. Journal of food science and technology, 48, pp.661-667. https://doi.org/10.1007/s13197-011-0232-4.
Pinkaew, H., Wang, Y.J. & Naivikul, O. 2017. Impact of pre-germination on amylopectin molecular structures, crystallinity, and thermal properties of pre-germinated brown rice starches. Journal of Cereal Science, 73, pp.151-157. https://doi.org/10.1016/j.jcs.2016.12.013.
Raju, T.S. 2019. Proteolysis of proteins. Co and Post-Translational Modifications of Therapeutic Antibodies and Proteins, pp.183-202.
Rattanamechaiskul, C., Soponronnarit, S. & Prachayawarakorn, S. 2014. Glycemic response to brown rice treated by different drying media. Journal of Food Engineering, 122, pp.48-55. https://doi.org/10.1016/j.jfoodeng.2013.08.022.
Ren, C., Hong, B., Zheng, X., Wang, L., Zhang, Y., Guan, L., Yao, X., Huang, W., Zhou, Y., & Lu, S. 2020. Improvement of germinated brown rice quality with autoclaving treatment. Food Science & Nutrition, 8(3), pp.1709-1717. https://doi.org/10.1002/fsn3.1459.
Roohinejad, S., Omidizadeh, A., Mirhosseini, H., Saari, N., Mustafa, S., Mohd Yusof, R., Meor Hussin, A.S., Hamid, A. & Abd Manap, M.Y. 2010. Effect of pre‐germination time of brown rice on serum cholesterol levels of hypercholesterolaemic rats. Journal of the Science of Food and Agriculture, 90(2), pp.245-251. https://doi.org/10.1002/jsfa.3803.
Saleh, A.S., Wang, P., Wang, N., Yang, L. & Xiao, Z. 2019. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Comprehensive reviews in food science and food safety, 18(4), pp.1070-1096. https://doi.org/10.1111/1541-4337.12449.
Schuller, H.M., Al-Wadei, H.A. & Majidi, M. 2008. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis, 29(10), pp.1979-1985. https://doi.org/10.1093/carcin/bgn041.
Seki, T., Nagase, R., Torimitsu, M., Yanagi, M., Ito, Y., Kise, M., Mizukuchi, A., Fujimura, N., Hayamizu, K. & Ariga, T. 2005. Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in the pre-germinated brown rice. Biological and Pharmaceutical Bulletin, 28(8), pp.1539-1541. https://doi.org/10.1248/bpb.28.1539.
Shao, Y. & Bao, J. 2015. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chemistry, 180, pp.86-97. https://doi.org/10.1016/j.foodchem.2015.02.027.
Sivakamasundari, S.K., Priyanga, S., Moses, J.A. & Anandharamakrishnan, C. 2022. Impact of processing techniques on the glycemic index of rice. Critical Reviews in Food Science and Nutrition, 62(12), pp.3323-3344. https://doi.org/10.1080/10408398.2020.1865259.
Sookwong, P., Yodpitak, S., Doungkaew, J., Jurithayo, J., Boonyawan, D. & Mahatheeranont, S. 2014. Application of oxygen-argon plasma as a potential approach of improving the nutrition value of pre-germinated brown rice. Journal of Food and Nutrition Research, 2(12), pp.946-951. https://doi.org/10.12691/jfnr-2-12-14.
Srisang, N., Varanyanond, W., Soponronnarit, S. & Prachayawarakorn, S. 2011. Effects of heating media and operating conditions on drying kinetics and quality of germinated brown rice. Journal of Food Engineering, 107(3-4), pp.385-392. https://doi.org/10.1016/j.jfoodeng.2011.06.030.
Ti, H., Zhang, R., Zhang, M., Li, Q., Wei, Z., Zhang, Y., Tang, X., Deng, Y., Liu, L. & Ma, Y. 2014. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food chemistry, 161, pp.337-344. https://doi.org/10.1016/j.foodchem.2014.04.024.
Tian, S., Nakamura, K. & Kayahara, H. 2004. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of agricultural and food chemistry, 52(15), pp.4808-4813. https://doi.org/10.1021/jf049446f.
Toutounji, M.R., Farahnaky, A., Santhakumar, A.B., Oli, P., Butardo Jr, V.M. & Blanchard, C.L. 2019. Intrinsic and extrinsic factors affecting rice starch digestibility. Trends in Food Science & Technology, 88, pp.10-22. https://doi.org/10.1016/j.tifs.2019.02.012.
Usuki, S., Ito, Y., Morikawa, K., Kise, M., Ariga, T., Rivner, M. & Yu, R.K. 2007. Effect of pre-germinated brown rice intake on diabetic neuropathy in streptozotocin-induced diabetic rats. Nutrition & Metabolism, 4, pp.1-11. https://doi.org/10.1186/1743-7075-4-25.
Viuda‐Martos, M., Lopez‐Marcos, M.C., Fernandez‐Lopez, J., Sendra, E., Lopez‐Vargas, J.H. & Perez‐Alvarez, J.A. 2010. Role of fiber in cardiovascular diseases: A review. Comprehensive reviews in food science and food safety, 9(2), pp.240-258. https://doi.org/10.1111/j.1541-4337.2009.00102.x.
Weng, X., Sun, M., Gao, H., Liu, Z., Huang, J., Liao, X. & Shen, G.X. 2019. Germinated brown rice, a whole grain with health benefits for common chronic diseases. Nutr. Food Sci. J, 2, p.119. https://doi.org/10.1080/10408398.2010.542259.
Wu, F., Chen, H., Yang, N., Wang, J., Duan, X., Jin, Z. & Xu, X. 2013. Effect of germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. Journal of Cereal Science, 58(2), pp.263-271. https://doi.org/10.1016/j.jcs.2013.06.008.
Wu, F., Yang, N., Touré, A., Jin, Z. & Xu, X. 2013. Germinated brown rice and its role in human health. Critical reviews in food science and nutrition, 53(5), pp.451-463. https://doi.org/10.1080/10408398.2010.542259.
Wunjuntuk, K., Kettawan, A., Rungruang, T. & Charoenkiatkul, S. 2016. Anti-fibrotic and anti-inflammatory effects of parboiled germinated brown rice(Oryza sativa ‘KDML 105’) in rats with induced liver fibrosis. Journal of Functional Foods, 26, pp.363-372. https://doi.org/10.1016/j.jff.2016.08.009.
Xia, Q. & Li, Y. 2018. Mild high hydrostatic pressure pretreatments applied before soaking process to modulate wholegrain brown rice germination: An examination on embryo growth and physicochemical properties. Food Research International, 106, pp.817-824. https://doi.org/10.1016/j.foodres.2018.01.052.
Xia, Q., Tao, H., Li, Y., Pan, D., Cao, J., Liu, L., Zhou, X. & Barba, F.J. 2020. Characterizing physicochemical, nutritional and quality attributes of wholegrain Oryza sativa L. subjected to high intensity ultrasound-stimulated pre-germination. Food Control, 108, p.106827. https://doi.org/10.1016/j.foodcont.2019.106827.
Xia, Q., Wang, L., Xu, C., Mei, J. & Li, Y. 2017. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry, 214, pp.533-542. https://doi.org/10.1016/j.foodchem.2016.07.114.
Yodpitak, S., Mahatheeranont, S., Boonyawan, D., Sookwong, P., Roytrakul, S. & Norkaew, O. 2019. Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food chemistry, 289, pp.328-339. https://doi.org/10.1016/j.foodchem.2019.03.061.
Zhang, Q., Xiang, J., Zhang, L., Zhu, X., Evers, J., van der Werf, W. & Duan, L. 2014. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. Journal of functional foods, 10, pp.283-291. https://doi.org/10.1016/j.jff.2014.06.009