Abudulai, M., Nboyine, J.A., Quandahor, P., Seidu, A., Traore, F., & Abudulai, M. 2022. Agricultural intensification causes decline in insect biodiversity. Global Decline of Insects, 1, 43-64. DOI: 10.5772/intechopen.101360
Ahmadizadeh, M., Valizadeh, M., Zaefizadeh, M., & Shahbazi, H. 2011. Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. Journal of Applied Sciences Research, 7(3), 236-246.
Amir Hossain, M., Lee, Y., Cho, J.I., Ahn, C.H., Lee, S.K., Jeon, J.S., Kang, H., Lee, C.H., An, G., & Park, P.B. 2010. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant molecular biology, 72(4), 557-566. https://doi.org/10.1007/s11103-009-9592-9
Assmann, S.M. 2003. OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends in Plant Science, 8(4), 151-153. https://doi.org/10.1016/S1360-1385(03)00052-9
Avila, R.G., Magalhães, P.C., da Silva, E.M., de Souza, K.R.D., Campos, C.N., de Alvarenga, A.A., & de Souza, T.C. 2021. Application of silicon to irrigated and water deficit sorghum plants increases yield via the regulation of primary, antioxidant, and osmoregulatory metabolism. Agricultural Water Management, 255, 107004. https://doi.org/10.1016/j.agwat.2021.107004
Baillo, E.H., Kimotho, R.N., Zhang, Z., & Xu, P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 10(10), 771. https://doi.org/10.3390/genes10100771
Baoxiang, W., Yan, L., Yifeng, W., Jingfang, L., Zhiguang, S., Ming, C., Yungao, X., Bo, X., Bo, Y., Jian, L., & Jinbo, L. 2021. OsbZIP72 is involved in transcriptional gene-regulation pathway of abscisic acid signal transduction by activating rice high-affinity potassium transporter OsHKT1. Rice Science, 28(3), 257-267. https://doi.org/10.1016/j.rsci.2021.04.005
Blum, A. 2010. Drought resistance and its improvement. Plant breeding for water-limited environments, 53-152. New York, NY: Springer New York
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Caverzan, A., Casassola, A., & Brammer, A.P. 2016. Reactive oxygen species and antioxidant enzymes. Abiotic and biotic stress in plants—recent advances and future perspectives involved in plant tolerance to stress. Intech, Croatia, 463-480.
Chaves, M.M., Maroco, J.P., & Pereira, J.S. 2003. Understanding plant responses to drought from genes to the whole plant. Functional plant biology, 30(3), 239-264. https://doi.org/10.1071/FP02076
Chen, Y., Chen, Y., Shi, Z., Jin, Y., Sun, H., Xie, F., & Zhang, L. 2019. Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky bluegrass. International Journal of Molecular Sciences, 20(6), 1289. https://doi.org/10.3390/ijms20061289
Christmann, A., Weiler, E.W., Steudle, E., & Grill, E. 2007. A hydraulic signal in root‐to‐shoot signalling of water shortage. The Plant Journal, 52(1), 167-174. https://doi.org/10.1111/j.1365-313X.2007.03234.x
De Santis, M.A., Soccio, M., Laus, M.N., & Flagella, Z. 2021. Influence of drought and salt stress on durum wheat grain quality and composition. Plants, 10(12), 2599. https://doi.org/10.3390/plants10122599
Dhindsa, R.S., Plumb-Dhindsa, P., & Thorpe, T.A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental botany, 32(1), 93-101. https://doi.org/10.1093/jxb/32.1.93
Doganlar, Z.B., Demir, K., Basak, H., & Gul, I. 2010. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research, 5(15), 2056-2065. DOI:10.5897/AJAR10.258
Emadi, A., Alizadeh, O., Amiri, B., Pirasteh Anousheh, H., & Zare, M. 2022. Effect of drought and salinity stress on yield, biochemical characteristics and antioxidant enzyme activity of forage sorghum. Water Research in Agriculture, 36(2), 217-232 (In Persian). doi: 10.22092/jwra.2022.358226.919
Farooq, A., Bukhari, S.A., Akram, N.A., Ashraf, M., Wijaya, L., Alyemeni, M.N., & Ahmad, P. 2020. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants, 9(1), 104. https://doi.org/10.3390/plants9010104
Farooq, M., Wahid, A., Kobayashi, N.S.M.A., Fujita, D.B.S.M.A., & Basra, S.M. 2009. Plant drought stress: effects, mechanisms and management. In Sustainable agriculture, 153-188. https://doi.org/10.1007/978-90-481-2666-8_12
Ge, L.F., Chao, D.Y., Shi, M., Zhu, M.Z., Gao, J.P., & Lin, H.X. 2008. Overexpression of the trehalose-6-phosphate phosphatase gene
OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 228(1), 191-201.
https://doi.org/10.1007/s00425-008-0729-x
Giannopolitis, C.N., & Ries, S.K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2), 309-314. https://doi.org/10.1104/pp.59.2.309
HongBo, S., ZongSuo, L., & MingAn, S. 2006. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids and surfaces B: Biointerfaces, 47(2), 132-139. https://doi.org/10.1016/j.colsurfb.2005.11.028
Hose, E., Steudle, E., & Hartung, W. 2000. Abscisic acid and hydraulic conductivity of maize roots: a study using cell-and root-pressure probes. Planta, 211(6), 874-882. https://doi.org/10.1007/s004250000412
Hu, L., Wang, Z., Du, H., & Huang, B. 2010. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Journal of plant physiology, 167(2), 103-109. https://doi.org/10.1016/j.jplph.2009.07.008
Iqbal, M.A. 2015. Agronomic management strategies elevate forage sorghum yield: A Review. Journal of Advanced Zoology, 3, 1-6. DOI: 10.32604/phyton.2022.017365
Jangra, M., Devi, S., Satpal, Kumar, N., Goyal, V., & Mehrotra, S. 2022. Amelioration effect of salicylic acid under salt stress in Sorghum bicolor L. Applied biochemistry and biotechnology, 194(10), 4400-4423. https://doi.org/10.1007/s12010-022-03915-7
Joo, J., Lee, Y.H., & Song, S.I. 2014. Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA. Plant Biotechnology Reports, 8(6), 431-441. https://doi.org/10.1007/s11816-014-0335-2
Kafi, M., Nabati, J., Masoumi, A.L.I., & Mehrgerdi, M.Z. 2011. Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench.]. Pakistan Journal of Botany, 43(5), 2457-2462.
Kao, C.H. 2015. Mechanisms of salt tolerance in rice plants: Compatible solutes and aquaporins. Crop, Environment & Bioinformatics, 12, 73-82.
Kapanigowda, M.H., Payne, W.A., Rooney, L.W., & Mullet, J.E. 2012. Transpiration ratio in sorghum [Sorghum bicolor (L.) Moench] for increased water-use efficiency and drought tolerance. Journal of Arid Land Studies, 21(2), 175-178.
Kappachery, S., Sasi, S., Alyammahi, O., Alyassi, A., Venkatesh, J., & Gururani, M.A. 2021. Overexpression of cytoplasmic Solanum tuberosum Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene improves PSII efficiency and alleviates salinity stress in Arabidopsis. Journal of Plant Interactions, 16(1), 398-410. https://doi.org/10.1080/17429145.2021.1962420
Khoddami, A., Messina, V., Vadabalija Venkata, K., Farahnaky, A., Blanchard, C.L., and Roberts, T.H. 2023. Sorghum in foods: Functionality and potential in innovative products. Critical reviews in food science and nutrition, 63(9), 1170-1186. https://doi.org/10.1080/10408398.2021.1960793
Kiarash, J.G., Wilde, H.D., Amirmahani, F., Moemeni, M.M., Zaboli, M., Nazari, M., Moosavi, S.S., & Jamalvandi, M. 2018. Selection and validation of reference genes for normalization of qRT-PCR gene expression in wheat (Triticum durum L.) under drought and salt stresses. Journal of Genetics, 97(5), 1433-1444. https://doi.org/10.1007/s12041-018-1042-5
Liaqat, W., Altaf, M.T., Barutçular, C., Mohamed, H.I., Ahmad, H., Jan, M.F., & Khan, E.H. 2024. Sorghum: a star crop to combat abiotic stresses, food insecurity, and hunger under a changing climate: a review. Journal of Soil Science and Plant Nutrition, 24(1), 74-101. https://doi.org/10.1007/s42729-023-01607-7
Lu, G., Gao, C., Zheng, X., & Han, B. 2009. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 229(3), 605-615. https://doi.org/10.1007/s00425-008-0857-3
Mansour, M.M.F., Emam, M.M., Salama, K.H.A., & Morsy, A.A. 2021. Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies. Planta, 254, 1-38. https://doi.org/10.1007/s00425-021-03671-8
Mathan, J., Singh, A., & Ranjan, A. 2021. Sucrose transport in response to drought and salt stress involves ABA‐mediated induction of OsSWEET13 and OsSWEET15 in rice. Physiologia Plantarum, 171(4), 620-637. https://doi.org/10.1111/ppl.13210
Mekonnen, D.W., Flügge, U.I., & Ludewig, F. 2016. Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana. Plant Science, 245, 25-34. https://doi.org/10.1016/j.plantsci.2016.01.005
Mishra, A.K., Das, R., George Kerry, R., Biswal, B., Sinha, T., Sharma, S., Arora, P., & Kumar, M. 2023. Promising management strategies to improve crop sustainability and to amend soil salinity. Frontiers in Environmental Science, 10, 962581. https://doi.org/10.3389/fenvs.2022.962581
Mohammadkhani, N., & Heidari, R. 2007. Effects of drought stress on protective enzyme activities and lipid peroxidation in two maize cultivars. Pakistan Journal of Biological Sciences, 10(21), 3835-3840.
Munns, R., & Tester, M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol, 59(1), 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Omidi, H. 2010. Changes of proline content and activity of antioxidative enzymes in two canola genotype under drought stress. American Journal of Plant Physiology, 5(6), 338-349.
Ozkur, O., Ozdemir, F., Bor, M., & Turkan, I. 2009. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environmental and experimental botany, 66(3), 487-492. https://doi.org/10.1016/j.envexpbot.2009.04.003
Pa, V., Vijayaraghavareddy, P., Uttarkar, A., Dawane, A., V, A., KC, B., Niranjan, V., MS, S., CV, A., Makarla, U., & Vemanna, R.S. 2022. Novel small molecules targeting bZIP23 TF improve stomatal conductance and photosynthesis under mild drought stress by regulating ABA. The FEBS Journal, 289(19), 6058-6077. https://doi.org/10.1080/17429145.2021.1962420
Parent, B., Hachez, C., Redondo, E., Simonneau, T., Chaumont, F., & Tardieu, F. 2009. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant physiology, 149(4), 2000-2012. https://doi.org/10.1104/pp.108.130682
Petrov, P.I., Kocheva, K.V., Petrova, A.S., Georgiev, G.I. 2012. Ion leakage and leaf anatomy of barley plants subjected to dehydration. Genetics, 2, 1-2.
Piri, H., Ansari, H., & Parsa, M. 2016. Study of quantitative and qualitative performance of forage sorghum at different levels of salinity and irrigation water in subsurface drip irrigation system. Water Research in Agriculture, 30(4), 467-482. (In Persian) doi: 10.22092/jwra.2017.109010
Rajabi Dehnavi, A., Zahedi, M., & Piernik, A. 2024. Understanding salinity stress responses in sorghum: exploring genotype variability and salt tolerance mechanisms. Frontiers in Plant Science, 14, 1296286. https://doi.org/10.3389/fpls.2023.1296286
Ramakrishna, C., Singh, S., Raghavendrarao, S., Padaria, J.C., Mohanty, S., Sharma, T.R., & Solanke, A.U. 2018. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Scientific Reports, 8(1), 2148. https://doi.org/10.1038/s41598-018-19766-4
Rychlik, W. 2007. OLIGO 7 primer analysis software. PCR primer design, 35-59. https://doi.org/10.1007/978-1-59745-528-2_2
Saed-Moucheshi, A., Pakniyat, H., Pirasteh-Anosheh, H., & Azooz, M.M. 2014. Role of ROS as signaling molecules in plants. In Oxidative damage to plants, 585-620. https://doi.org/10.1016/B978-0-12-799963-0.00020-4
Sanjari, S., Shirzadian-Khorramabad, R., Shobbar, Z.S., & Shahbazi, M. 2019. Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum. Plant cell reports, 38(3), 361-376. https://doi.org/10.1007/s00299-019-02371-8
Seleiman, M.F., Aslam, M.T., Alhammad, B.A., Hassan, M.U., Maqbool, R., Chattha, M.U., Khan, I., Gitari, H.I., Uslu, O.S., Roy, R., & Battaglia, M.L. 2022. Salinity stress in wheat: effects, mechanisms and management strategies. Phyton, 91(4). https://doi.org/10.32604/PHYTON.2022.017365
Shakeri, E., Emam, Y., Tabatabaei, S.A., & Sepaskhah, A.R. 2017. Evaluation of grain sorghum (Sorghum bicolor L.) lines/cultivars under salinity stress using tolerance indices. International Journal of Plant Production, 11(1).
Sircar, S., Musaddi, M., & Parekh, N. 2022. NetREx: network-based rice expression analysis server for abiotic stress conditions. Database, 2022, p.baac060. https://doi.org/10.1093/database/baac060
Sudhakar Reddy, P., Srinivas Reddy, D., Sivasakthi, K., Bhatnagar-Mathur, P., Vadez, V., & Sharma, K.K. 2016. Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Frontiers in plant science, 7, 529. https://doi.org/10.3389/fpls.2016.00529
Swami, A.K., Alam, S.I., Sengupta, N., & Sarin, R. 2011. Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environmental and Experimental Botany, 71(2), 321-328. https://doi.org/10.1016/j.envexpbot.2010.12.017
Taleh Ahmad, Sara., & Haddad, R. 2010. The effect of silicon on the activity of antioxidant enzymes and the content of osmotic regulators in two bread wheat genotypes under drought stress conditions. Journal of Agronomy, Seedlings and Seeds, 26(2), 207-225 (In Persian).
Tari, I., Laskay, G., Takács, Z., & Poór, P. 2013. Response of sorghum to abiotic stresses: A review. Journal of agronomy and crop science, 199(4), 264-274. https://doi.org/10.1111/jac.12017
Umair Hassan, M., Chattha, M.U., Khan, I., Khan, T.A., Nawaz, M., Tang, H., Noor, M.A., Asseri, T.A., Hashem, M., & Guoqin, H. 2024. Zinc seed priming alleviates salinity stress and enhances sorghum growth by regulating antioxidant activities, nutrient homeostasis, and osmolyte synthesis. Agronomy, 14(8), 1815.
https://doi.org/10.3390/agronomy14081815
Venâncio, C., Wijewardene, L., Ribeiro, R., & Lopes, I. 2023. Combined effects of two abiotic stressors (salinity and temperature) on a laboratory-simulated population of Daphnia longispina. Hydrobiologia, 850(14), 3197-3208. https://doi.org/10.1007/s10750-023-05249-9
Wang, G., Li, X., Ye, N., Huang, M., Feng, L., Li, H., & Zhang, J. 2021. OsTPP1 regulates seed germination through the crosstalk with abscisic acid in rice. New Phytologist, 230(5), 1925-1939. https://doi.org/10.1111/nph.17300
Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P., & Kwak, S.S. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant physiology and Biochemistry, 47(7), 570-577. https://doi.org/10.1016/j.plaphy.2009.02.009
Yaghoubi Khanghahi, M., AbdElgawad, H., Verbruggen, E., Korany, S.M., Alsherif, E.A., Beemster, G.T., & Crecchio, C. 2022. Biofertilisation with a consortium of growth‐promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions. Physiologia Plantarum, 174(6), 13800. https://doi.org/10.1111/ppl.13800
Yao, L., Cheng, X., Gu, Z., Huang, W., Li, S., Wang, L., Wang, Y.F., Xu, P., Ma, H., & Ge, X. 2018. The AWPM-19 family protein OsPM1 mediates abscisic acid influx and drought response in rice. The Plant Cell, 30(6), 1258-1276. https://doi.org/10.1105/tpc.17.00770
Yilmaz, S., Temizgül, R., Yürürdurmaz, C., & Kaplan, M. 2020. Oxidant and antioxidant enzyme response of redbine sweet sorghum under NaCl salinity stress. Bioagro, 32(1), 31-38.
Yong, B., Xie, H., Li, Z., Li, Y.P., Zhang, Y., Nie, G., Zhang, X.Q., Ma, X., Huang, L.K., Yan, Y.H., & Peng, Y. 2017. Exogenous application of GABA improves PEG-induced drought tolerance positively associated with GABA-shunt, polyamines, and proline metabolism in white clover. Frontiers in physiology, 8, 1107. https://doi.org/10.3389/fphys.2017.01107
Yoon, S., Lee, D.K., Yu, I.J., Kim, Y.S., Choi, Y.D., & Kim, J.K. 2017. Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants. Plant Biotechnology Reports, 11(1), 53-62. https://doi.org/10.1007/s11816-017-0430-2
Zhang, C., Li, C., Liu, J., Lv, Y., Yu, C., Li, H., Zhao, T., & Liu, B. 2017. The OsABF1 transcription factor improves drought tolerance by activating the transcription of COR413-TM1 in rice. Journal of experimental botany, 68(16), 4695-4707. https://doi.org/10.1093/jxb/erx260
Zhang, L., Zhang, L., Xia, C., Gao, L., Hao, C., Zhao, G., Jia, J., Kong, X. 2017. A novel wheat C-bZIP gene, TabZIP14-B, participates in salt and freezing tolerance in transgenic plants. Frontiers in Plant Science, 8, 710. https://doi.org/10.3389/fpls.2017.00710
Zhang, L., Zhang, L., Xia, C., Zhao, G., Liu, J., Jia, J., & Kong, X. 2015. A novel wheat bZIP transcription factor,
TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiologia plantarum, 153(4), 538-554.
https://doi.org/10.1111/ppl.12261