Ahmed, H., Zeng, Y., Yang, X., Anwaar, H., Mansha, M., Hanif, C., Ikram, K., Ullah, A. & Alghanem, S. . 2020. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi Journal of Biological Sciences, 27 (8):2116-2123.
https://doi.org/10.1016/j.sjbs.2020.06.019.
Alexieva, V., Sergiev, I., Mapelli, S. & Karanov, E. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24 (12):1337-1344.
https://doi.org/10.1046/j.1365-3040.2001.00778.x.
Amoah, J.N. & Seo, Y.W. 2021. Effect of progressive drought stress on physio-biochemical responses and gene expression patterns in wheat. 3 Biotech, 11 (10):440. https://doi.org/10.1007/s13205-021-02991-6.
Arriagada, O., Meneses, C., Pedreschi, R., Núñez-Lillo, G., Maureira, C., Reveco, S., Villarroel, V., Steinfort, U., Albornoz, F. & Cabas-Lühmann, P. 2025. Combined multi-omics and physiological approaches to elucidate drought-response mechanisms of durum wheat. Frontiers in Plant Science, 16:1540179.
https://doi.org/10.3389/fpls.2025.1540179.
Askari, E. & Ehsanzadeh, P. 2015. Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiologiae Plantarum, 37 (2):4. https://doi.org/10.1007/s11738-014-1762-y.
Bates, L. Waldren, R. & Teare, I. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39 (1):205-207. https://doi.org/10.1007/BF00018060.
Cha-Um, S., Takabe, T. & Kirdmanee, C. 2010. Ion contents, relative electrolyte leakage, proline accumulation, photosynthetic abilities and growth characters of oil palm seedlings in response to salt stress. Pakistan Journal of Botany, 42 (3):2191-2020.
Google Scholar link.
Grosse-Heilmann, M., Cristiano, E., Deidda, R. & Viola, F. 2024. Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resources, Environment and Sustainability, 17:100170.
https://doi.org/10.1016/j.resenv.2024.100170.
Guizani, A., Askri, H., Amenta, M.L., Defez, R., Babay, E., Bianco, C., Rapaná, N., Finetti-Sialer, M. & Gharbi, F. 2023. Drought responsiveness in six wheat genotypes: identification of stress resistance indicators. Frontiers in Plant Science, 14:1232583.
https://doi.org/10.3389/fpls.2023.1232583.
Hadidi, M., Ghobadi, M., Saeidi, M., Ghobadi, M.E. 2023. Grain yield, its components and some physiologic characteristics of flag leaf in commercial wheat cultivars in response to post-anthesis drought stress, Cereal Biotechnology and Biochemistry, 2:153-169.
10.22126/cbb.2023.9328.1050.
Heath, R.L. & Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125 (1):189-198.
https://doi.org/10.1016/0003-9861(68)90654-1.
Isgandarova, T.Y., Rustamova, S.M., Aliyeva, D.R., Rzayev, F.H., Gasimov, E.K. & Huseynova, I.M. 2024. Antioxidant and ultrastructural alterations in wheat during drought-induced leaf senescence. Agronomy, 14 (12):2924.
Google Scholar link.
Kermani, S.G., Saeidi, G., Sabzalian, M.R. & Gianinetti, A. 2019. Drought stress influenced sesamin and sesamolin content and polyphenolic components in sesame (
Sesamum indicum L.) populations with contrasting seed coat colors. Food Chemistry, 289:360-368.
https://doi.org/10.1016/j.foodchem.2019.03.004.
Kermani, S.Q., Pourseyyedi, S., Mohammadi, G.A. & Moeini, A. 2015. Regeneration of White top (
Cardaria draba L.) using Tissue Culture. Agricultural Biotechnology Journal, 7 (1):133-154. https://doi.org/
10.22103/jab.2015.1356.
Kokebie, D., Enyew, A., Masresha, G., Fentie, T. & Mulat, E. 2024. Morphological, physiological, and biochemical responses of three different soybean (
Glycine max L.) varieties under salinity stress conditions. Frontiers in Plant Science, 15:1440445.
https://doi.org/10.3389/fpls.2024.1440445.
Laus, M.N., De-Santis, M.A., Flagella, Z. & Soccio, M. 2021. Changes in antioxidant defence system in durum wheat under hyperosmotic stress: A concise overview. Plants, 11 (1):98.
https://doi.org/10.3390/plants11010098.
Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148:350-382.
Google Scholar link.
Ma, D., Sun, D., Wang, C., Li, Y. & Guo, T. 2014. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 80:60-66.
https://doi.org/10.1016/j.plaphy.2014.03.024.
Nyaupane, S., Poudel, M.R., Panthi, B., Dhakal, A., Paudel, H. & Bhandari, R. 2024. Drought stress effect, tolerance, and management in wheat–a review. Cogent Food & Agriculture, 10 (1):2296094.
https://doi.org/10.1080/23311932.2023.2296094.
Pantha, S., Kilian, B., Özkan, H., Zeibig, F. & Frei, M. 2024. Physiological and biochemical changes induced by drought stress during the stem elongation and anthesis stages in the Triticum genus. Environmental and Experimental Botany, 228:106047.
https://doi.org/10.1016/j.envexpbot.2024.106047.
Plewa, M.J., Smith, S.R. & Wagner, E.D. 1991. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 247 (1):57-64.
https://doi.org/10.1016/0027-5107(91)90033-K.
Qayyum, A., Al-Ayoubi, S., Sher, A., Bibi, Y., Ahmad, S., Shen, Z. & Jenks, M.A. 2021. Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. Saudi Journal of Biological Sciences, 28 (9):5238-5249.
https://doi.org/10.1016/j.sjbs.2021.05.040.
Ren, J., Sun, L.N., Zhang, Q.Y. & Song, X.S. 2016. Drought tolerance is correlated with the activity of antioxidant enzymes in Cerasus humilis seedlings. BioMed Research International, 2016 (1):9851095.
https://doi.org/10.1155/2016/9851095.
Takács, G., Gergely, I., Ördög, V., Vörös, L. & Iváncsics, J. 2025. Approaches to studying wheat and maize drought stress responses. Plant and Soil, 21:1-18. https://doi.org/10.1007/s11104-025-07789-6.