Assessing gene action and heterosis for quantitative traits in rice (Oryza sativa L.) through North Carolina III mating design

Document Type : Original Article

Authors

1 Associate Professor of Rice Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

2 Assistant Professor of Rice Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

Abstract

Introduction
Due to the future demand for rice, as a food required by humans, it is necessary to produce new cultivars whose yield exceeds the existing cultivars. Success in any breeding program depends on selecting appropriate genotypes as parents in the crossing program. Estimating genetic parameters such as heritability, gene effect, and the relationship between traits is fundamental to developing the most beneficial breeding method. Various mating designs such as the North Carolina I, II, and III designs are used to estimate genetic diversity and variance components. This study was performed to evaluate heterosis, genetic parameters, gene effect, and heritability of important quantitative traits in rice using the North Carolina III mating design.
materials and methods
In this study, two cultivars, Deylamani and Gilaneh, were used for the North Carolina III mating design according to the results of a study using microsatellite markers. After the crosses were performed, the progenies from the North Carolina III mating design were planted with their parents in a randomized complete block design with three replications. Prior to evaluation, off-type plants were removed, and then the mean of observations per plot was used for statistical analysis. SPSS and Excel softwares were used to analyze variance and estimate NCIII genetic parameters.
Results
Estimation of additive and dominance variances indicated the presence of additive and non-additive effects in genetic control of grain yield, 100-grain weight, plant height, number of panicles per plant, number of spikelet per panicle, panicle length, and number of filled grains per panicle. Non-additive effects played an essential role in plant height, the number of panicles per plant, and the number of filled grains per panicle. The overdominance phenomenon was observed in grain yield, 100-grain weight, plant height, number of panicles per plant, number of spikelet per panicle, panicle length, and number of filled grains per panicle. In grain yield, the range of heterosis was -12.64% for the cross of F2 No. 1 × Gilaneh up to 38.5% for the cross of F2 No. 11 × Deylamani. For plant height, the highest relative heterosis based on the average parent to reduce plant height was seen at the cross of F2 No. 9 × Deylamani (-11.4%).
Conclusion
The results of this study indicate the existence of additive and non-additive effects in genetic control of grain yield, 100-seed weight, plant height, number of panicles per plant, number of spikelets, panicle length, and filled grain number per panicle. On the other hand, in genetic control of grain yield, 100-grain weight, number of spikelets per panicle, and panicle length, additive effects had a greater role. However, in addition to additive effects, non-additive effects were also involved in genetic control of grain yield, 100-grain weight, number of panicles, and panicle length. The study of heterosis also showed the existence of superior offspring in the studied traits and the possibility of using them in breeding programs.

Keywords


Acquaah, G. 2009. Principles of plant genetics and breeding. John Wiley & Sons.
Allahgholipour, M., Farshadfar, E., & Rabiei, B. 2014. Molecular characterization and genetic diversity analysis of different rice cultivars by microsatellite markers. Genetika, 46 (1), 187-198. https://doi.org/10.2298/GENSR1401187A
Bainade, P. S., Manjare, M. R., Deshmukh, S. G., & Kumbhar, S. D. 2014. Genetic analysis in green gram (Vigna radiata (L.) Wilczek) subjected to North Carolina mating design-I. The Bioscan, 9 (2), 875-878.
Comstock, R. E., & Robinson, H. F. 1952. Estimation of average dominance of genes. Heterosis, 2, 494-516.
Dan, Z., Hu, J., Zhou, W., Yao, G., Zhu, R., Huang, W., & Zhu, Y. 2015. Hierarchical additive effects on heterosis in rice (Oryza sativa L.). Frontiers in plant science, 6, 738. https://doi.org/10.3389/fpls.2015.00738
de Morais, O. P., Pereira, J. A., Melo, P. G. S., Guimarães, P. H. R., & de Morais, O. P. 2017. Gene action and combining ability for certain agronomic traits in red rice lines and commercial cultivars. Crop Science, 57 (3), 1295-1307. https://doi.org/10.2135/cropsci2015.11.0687
Devi, B. 2017. Magnitude of heterosis in some inter-Varietal crosses of Rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry, 6 (2), 327-330.
Fonseca, S., & Patterson, F. L. 1968. Hybrid vigor in a seven‐parent diallel cross in common winter wheat (Triticum aestivum L.). Crop Science, 8 (1), 85-88. https://doi.org/10.2135/cropsci1968.0011183X000800010025x
Gahtyari, N. C., Patel, P. I., Choudhary, R., Kumar, S., Kumar, N., & Jaiswal, J. P. 2017. Combining ability studies for yield, associated traits and quality attributes in rice for South Gujarat (Oryza sativa L.). Journal of Applied and Natural Science, 9 (1), 60-67. https://doi.org/10.31018/jans.v9i1.1151
Hadini, H., Nasrullah, N., Taryono, T., & Basunanda, P. 2015. Estimates of genetic variance component of an equilibrium population of corn. AGRIVITA, Journal of Agricultural Science, 37 (1), 45-50. https://doi.org/10.17503/Agrivita-2015-37-1-p045-050
Haghighi Hasanalideh, A., Farshadfar, E., & Allahgholipour, M. 2017. Genetic parameters and combining ability of some important traits in rice (Oryza sativa L.). Genetika, 49 (3), 1001-1014. https://doi.org/10.2298/GENSR1703001H
Hallauer, A. R., Carena, M. J., & Miranda Filho, J. D. 2010. Quantitative genetics in maize breeding (Vol. 6). Springer Science & Business Media.
He, Q., Zhang, K., Xu, C., & Xing, Y. 2010. Additive and additive× additive interaction make important contributions to spikelets per panicle in rice near isogenic (Oryza sativa L.) lines. Journal of Genetics and Genomics, 37 (12), 795-803. https://doi.org/10.1016/S1673-8527(09)60097-7
Kader, M. A., Patwary, A. K., Hossain, M. M., & Majumder, R. R. 2015. Study on heterosis of some experimental hybrids in rice. Scientia Agriculturae, 12 (3), 135-143. https://doi.org/10.15192/PSCP.SA.2015.12.3.135143
Khush, G. S. 2013. Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breeding, 132 (5), 433-436. https://doi.org/10.1111/pbr.1991
Kumar, S., Singh, N. K., Kumar, R., Singh, S. K., Nilanjaya, C. K., & Kumar, A. 2017. Heterosis studies for various morphological traits of rice under drought conditions. International Journal of Current Microbiology and Applied Sciences, 6 (10), 507-521. DOI: https://doi.org/10.20546/ijcmas.2017.610.062
Li, L., He, X., Zhang, H., Wang, Z., Sun, C., Mou, T., Li, X., Zhang, Y., & Hu, Z. 2015. Genomewide mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two elite rice hybrids. Journal of genetics, 94 (2), 261-270. https://doi.org/10.1007/s12041-015-0527-8
Makwana, R., Patel, V., Pandya, M., & Chaudhari, B. 2018. Inferences on magnitude and nature of gene effects for morpho-physiological traits in rice (Oryza sativa L.). International Journal of Pure and Applied Bioscience, 6, 1488-1493. http://dx.doi.org/10.18782/2320-7051.5530
Nayak, P., Sreedhar, M., SurenderRaju, C., & Vanisree, S. 2016. Heterosis and gene action studies involving aromatic lines for grain quality traits in rice. International Journal of Life Sciences, 4 (4), 517-528.
Nugraha, Y., Ardie, S. W., Ghulamahdi, M., Suwarno, S., & Aswidinnoor, H. 2016. Implication of gene action and heritability under stress and control conditions for selection iron toxicity tolerant in rice. AGRIVITA, Journal of Agricultural Science, 38 (3), 282-295. https://doi.org/10.17503/agrivita.v38i3.740
Nuruzzaman, M., Alam, M. F., Ahmed, M. G., Shohael, A. M., Biswas, M. K., Amin, M. R., & Hossain, M. M. 2002. Studies on parental variability and heterosis in rice. Pakistan Journal of Biological Sciences, 5, 1006-1009. https://doi.org/10.3923/pjbs.2002.1006.1009
Patil, P. P, Vashi, R. D., Lodam, V. A, Patil, S. R., & Patil, S. S. 2012. Combining ability for yield and component characters in rice (Oryza sativa L.). Agricultural Science Digest, 32 (1), 28-32.
Pradhan, S. K., & Singh, S. 2008. Combining ability and gene action analysis for morphological and quality traits in basmati rice. ORYZA-An International Journal on Rice, 45 (3), 193-197.
Priyanka, K., & Jaiswal, H. K. 2017. Heterosis studies for yield and yield related traits over seasons in boro rice. International Journal of Pure and Applied Bioscience, 5 (6), 1000-1009. http://dx.doi.org/10.18782/2320- 7051.5154
Rahaman, A. 2016. Study of nature and magnitude of gene action in hybrid rice (Oryza sativa L.) through experiment of line x tester mating design. International Journal of Applied Research, 2 (2), 405-410.
Raju, N. S., Senguttuvel, P., Prasad, A. H., Beulah, P., Naganna, P., Ali, S., & Rao, K. 2017. Combining ability and heterosis prediction for grain yield of parental lines and hybrids for heat tolerance in rice (Oryza sativa L.). Agriculture update, 12, 1213-1221. https://doi.org/10.15740/HAS/AU/12.TECHSEAR(5)2017/1213-1221
Ray, B. P., Sarker, M. & Saha, S. 2014. Combining ability and heterosis in inter-ecotypic classes of rice (Oryza sativa L.). Bulletin of the Institute of Tropical Agriculture, Kyushu University, 37 (1), 27-39.
Shabbir, G., Husnain, S., Mehdi, S. M., & Ehsan, M. 2017. Combining ability studies in rice through 6 × 6 diallel cross analysisJournal of Agricultural Research, 55 (4), 591-600.
Sharma, R. K., & Mani, S. C. 2008. Analysis of gene action and combining ability for yield and its component characters in rice. ORYZA-An International Journal on Rice, 45 (2), 94-97.
Shen, G., Zhan, W., Chen, H., & Xing, Y. 2014. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Science, 215, 11-18. https://doi.org/10.1016/j.plantsci.2013.10.004
Shobhana, V. G., Ashokkumar, K., Karthikeyan, A., Kumar, R. N., Sheeba, A., & Vivekanandan, P. 2018. Heterosis analysis for yield in hybrids involving new plant type and indica lines of rice (Oryza sativa L.). International Journal of Chemical Studies, 6 (3), 3043-3049.
Soni, S. K., Yadav, V. K., Bhadana, V. P., Yadav, M. C., & Sundaram, R. M. 2017. Prediction of heterosis using hypervariable microsatellite markers in tropical japonica× indica rice hybrids. International Journal of Current Microbiology and Applied Sciences, 6 (10), 1419-1427.
Tejaswini, K. L. Y., Kumar, B. R., Mohammad, L. A., Raju, S. K., Srinivas, M., & Rao, P. R. 2016. Study of genetic parameters in F5 families of rice (Oryza sativa L.). International Journal of Environment, Agriculture and Biotechnology, 1 (4), 238592. https://doi.org/10.22161/ijeab/1.4.17
Wen, J., Zhao, X., Wu, G., Xiang, D., Liu, Q., Bu, S. H., Yi, C., Song, Q., Dunwell, J. M., Tu, J., Zhang, T., & Zhang, Y. M. 2015. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design. Scientific Reports, 5 (1), 18376. https://doi.org/10.1038/srep18376
Zhou, H., Xia, D., Zeng, J., Jiang, G., & He, Y. 2017. Dissecting combining ability effect in a rice NCII-III population provides insights into heterosis in indica-japonica cross. Rice, 10 (1), 39. https://doi.org/10.1186/s12284-017-0179-9