A review of the role and function of promoters in cereal crops

Document Type : Review

Authors

1 Department of Biotechnology, Faculty of Agricultural Sciences,, University of Guilan

2 Department of Biotechnology, Faculty of Agriculture, University of Guilan.

3 Department of biotechnology, faculty of Agricultural sciences, University of Guilan

Abstract

Although all cells in a plant contain the same genes and the same genetic information, only a small group of genes are expressed at any given time to coordinate cell division, growth, differentiation, development, reproduction, environmental control, and other important cell processes. And these complex tasks are performed in a coordinated way. In general, gene expression can be regulated and controlled at any of the following stages: transcription, mRNA processing, transcription stability, mRNA transfer to the cytoplasm, translation, or protein modification. A key point in regulating expression is the beginning of copying, and there is a lot of information about setting up a copying machine near where the copying begins. Studies have shown that the main components in these processes are highly conserved in yeast, animals and plants. All transgenic structures - including target genes and marker genes - require promoters to regulate replication reproducibly and predictably. Transgenes are cloned together with different types of non-institutional promoters (from other sources) or co-institutional (studied plant) during the construction of chimeric genes within transgenic vectors, thus providing biotechnologists with a wide range of expression patterns that Suitable for their research and testing. The promoter (s) used in transgenic plants are the factors that in many cases distinguish between a successful plant biotechnology project and unknown and unsuccessful projects, so careful selection is crucial in any project. This article reviews the structure of promoters in eukaryotes and plants and describes the types of plant promoters and their most significant function as much as possible.
Although all cells in a plant contain the same genes and the same genetic information, only a small group of genes are expressed at any given time to coordinate cell division, growth, differentiation, development, reproduction, environmental control, and other important cell processes. And these complex tasks are performed in a coordinated way. Although all cells in a plant contain the same genes and the same genetic information, only a small group of genes are expressed at any given time to coordinate cell division, growth, differentiation, development, reproduction, environmental control, and other important cell processes. And these complex tasks are performed in a coordinated way. Although all cells in a plant contain the same genes and the same genetic information, only a small group of genes are expressed at any given time to coordinate cell division, growth, differentiation, development, reproduction, environmental control, and other important cell processes. And these complex tasks are performed in a coordinated way. In general, gene expression can be regulated and controlled at any of the following stages: transcription, mRNA processing, transcription stability, mRNA transfer to the cytoplasm, translation, or protein modification. A key point in regulating expression is the beginning of copying, and there is a lot of information about setting up a copying machine near where the copying begins. Studies have shown that the main components in these processes are highly conserved in yeast, animals and plants. All transgenic structures - including target genes and marker genes - require promoters to regulate replication reproducibly and predictably. Transgenes are cloned together with different types of non-institutional promoters (from other sources) or co-institutional (studied plant) during the construction of chimeric genes within transgenic vectors, thus providing biotechnologists with a wide range of expression patterns that Suitable for their research and testing. The promoter (s) used in transgenic plants are the factors that in many cases distinguish between a successful plant biotechnology project and unknown and unsuccessful projects, so careful selection is crucial in any project. This article reviews the structure of promoters in eukaryotes and plants and describes the types of plant promoters and their most significant function as much as possible. Although all cells in a plant contain the same genes and the same genetic information, only a small group of genes are expressed at any given time to coordinate cell division, growth, differentiation, development, reproduction, environmental control, and other important cell processes. And these complex tasks are performed in a coordinated way. Although all cells in a plant contain the same genes and the same genetic information, only a small group of genes are expressed at any given time to coordinate cell division, growth, differentiation, development, reproduction, environmental control, and other important cell processes. And these complex tasks are performed in a coordinated way.

Keywords


Amack, S. C., & Antunes, M. S. 2020. CaMV35S promoter–A plant biology and biotechnology workhorse in the era of synthetic biology. Current Plant Biology, 100179. https://doi.org/10.1016/j.cpb.2020.100179
Annadana, S., Mlynárová, L., Udayakumar, M., de Jong, J., & Nap, J.-P. 2002. The potato Lhca3. St. 1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters. Molecular Breeding, 8 (4), 335-344. https://doi.org/10.1023/A:1015212312928
Bai, J., Wang, X., Wu, H., Ling, F., Zhao, Y., Lin, Y., & Wang, R. 2020. Comprehensive construction strategy of bidirectional green tissue‐specific synthetic promoters. Plant Biotechnology Journal, 18 (3), 668-678. https://doi.org/10.1111/pbi.13231
Bai, X., Huang, Y., Hu, Y., Liu, H., Zhang, B., Smaczniak, C., & Xing, Y. 2017. Duplication of an upstream silencer of FZP increases grain yield in rice. Nature Plants, 3 (11), 885-893. https://doi.org/10.21608/assjm.2018.65125
Bak, A., & Emerson, J. B. 2020. Cauliflower mosaic virus (CaMV) biology, management, and relevance to GM plant detection for sustainable organic agriculture. Frontiers in Sustainable Food Systems, 4, 21. https://doi.org/10.3389/fsufs.2020.00021
Battraw, M. J., & Hall, T. C. 1990. Histochemical analysis of CaMV 35S promoter-β-glucuronidase gene expression in transgenic rice plants. Plant Molecular Biology, 15 (4), 527-538. https://doi.org/10.1007/BF00017828.
Berrocal‐Lobo, M., Molina, A., & Solano, R. 2002. Constitutive expression of ETHYLENE‐RESPONSE‐FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal, 29 (1), 23-32. https://doi.org/10.1046/j.1365-313x.2002.01191
Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., & Dong, X. 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent r­­­­­esistance. The Plant Cell, 9 (9), 1573-1584. https://doi.org/10.1105/tpc.9.9.1573
Cahoon, E. B., & Shanklin, J. 2000. Substrate-dependent mutant complementation to select fatty acid desaturase variants for metabolic engineering of plant seed oils. Proceedings of the National Academy of Sciences, 97 (22), 12350-12355. https://doi.org/10.1073/pnas.210276297
Cai, M., Wei, J., Li, X., Xu, C., & Wang, S. 2007. A rice promoter containing both novel positive and negative cis‐elements for regulation of green tissue‐specific gene expression in transgenic plants. Plant Biotechnology Journal, 5 (5), 664-674. https://doi.org/10.1111/j.1467-7652.2007.00271
Caldana, C., Scheible, W.-R., Mueller-Roeber, B., & Ruzicic, S. 2007. A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods, 3 (1), 7. https://doi.org/10.1186/1746-4811-3-7
Cao, P., Ren, Y., Liu, X., Zhang, T., Zhang, P., Xiao, L., & Wan, J. 2019. Purine nucleotide biosynthetic gene GARS controls early chloroplast development in rice (Oryza sativa L.). Plant cell reports, 38 (2), 183-194. https://doi: 10.1007/s00299-018-2360-z
Capell, T., Escobar, C., Liu, H., Burtin, D., Lepri, O., & Christou, P. 1998. Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theoretical and Applied Genetics, 97 (1-2), 246-254. https://doi.org/10.1007/s001220050892
Chen, F., Gao, M.-J., Miao, Y.-S., Yuan, Y.-X., Wang, M.-Y., Li, Q., & He, Z.-H. 2010. Plasma membrane localization and potential endocytosis of constitutively expressed XA21 proteins in transgenic rice. Molecular Plant, 3 (5), 917-926. https://doi.org/10.1093/mp/ssq038
Chung, M.-Y., Naing, A. H., Vrebalov, J., Shanmugam, A., Lee, D.-J., Park, I. H., & Giovannon, J. 2020. The use of SlAdh2 promoter as a novel fruit-specific promoter in transgenic tomato. Journal of Plant Biotechnology, 47 (2), 172-178. https://doi.org/10.5010/JPB.2020.47.2.172  
Cody, W. B., & Scholthof, H. B. 2019. Plant virus vectors 3.0: Transitioning into synthetic genomics. Annual Review of Phytopathology, 57, 211-230. https://doi.org/10.1146/annurev-phyto-082718-100301
Commission, E. 2010. A Decade of EU-Funded GMO Research 2001–2010. Directorate‐General for Research and Innovation, Biotechnologies, Agriculture, Food. Retrived November 11.from https://op.europa.eu/en/publication-detail/-/publication/d1be9ff9-f3fa-4f3c-86a5-beb0882e0e65
Corrado, G., & Karali, M. 2009. Inducible gene expression systems and plant biotechnology. Biotechnology Advances, 27 (6), 733-743. https://doi.org/10.1016/j.biotechadv.2009.05.006
Czarnecka, E., Ingersoll, J. C., & Gurley, W. B. 1992. AT-rich promoter elements of soybean heat shock gene Gmhsp 17.5 E bind two distinct sets of nuclear proteins in vitro. Plant Molecular Biology, 19 (6), 985-1000. https://doi.org/10.1007/BF00040530
Dalton, S., Heywood, E., Timms, E., & Morris, P. 2007. A Comparison of Maize and Rice Ubiquitin Promoter Activity using the uidA (gus) Gene in Maize. Transformation, 100, 150. https://doi.org/10.13140/RG.2.1.3269.5444
Datla, R., Anderson, J. W., & Selvaraj, G. 1997. Plant promoters for transgene expression. In Biotechnology Annual Review, 3, 269-296 https://doi.org/10.1007/BF02703916.
de Vetten, N., ter Horst, J., van Schaik, H.-P., de Boer, A., Mol, J., & Koes, R. 1999. A cytochrome b5 is required for full activity of flavonoid 3′, 5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proceedings of the National Academy of Sciences, 96 (2), 778-783. https://doi.org/10.1073/pnas.96.2.778
Deng, F., Yamaji, N., Ma, J. F., Lee, S. K., Jeon, J. S., Martinoia, E., & Song, W. Y. 2018. Engineering rice with lower grain arsenic. Plant Biotechnology Journal, 16 (10), 1691-1699. https://doi.org/10.1111/pbi.12905
Dey, N., & Maiti, I. B. 1999. Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Molecular Biology, 40 (5), 771-782. https://doi.org/10.1023/A:1006285426523
Dey, N., Sarkar, S., Acharya, S., & Maiti, I. B. 2015. Synthetic promoters in planta. Planta, 242 (5), 1077-1094. https://doi.org/10.1007/s00425-015-2377-2
Deyholos, M. K., & Sieburth, L. E. 2000. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. The Plant Cell, 12 (10), 1799-1810. https://doi.org/10.1105/tpc.12.10.1799
Doebley, J., Stec, A., & Hubbard, L. 1997. The evolution of apical dominance in maize. Nature, 386 (6624), 485-488. https://doi.org/10.1038/386485a0
Dutt, M., Dhekney, S. A., Soriano, L., Kandel, R., & Grosser, J. W. 2014. Temporal and spatial control of gene expression in horticultural crops. Horticulture Research, 1 (1), 1-17. https://doi.org/10.1038/hortres.2014.47
Eyal, Y., Curie, C., & McCormick, S. 1995. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. The Plant Cell, 7 (3), 373-384. https://doi.org/10.1105/tpc.7.3.373
Fang, R.-X., Nagy, F., Sivasubramaniam, S., & Chua, N.-H. 1989. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. The Plant Cell, 1 (1), 141-150. https://doi.org/10.1105/tpc.1.1.141
Fasani, E., Manara, A., Martini, F., Furini, A., & DalCorso, G. 2018. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant, Cell and Environment, 41 (5), 1201-1232. https://doi.org/10.1111/pce.12963
Frühling, M., Hohnjec, N., Schröder, G., Küster, H., Pühler, A., & Perlick, A. M. 2000. Genomic organization and expression properties of the VfENOD5 gene from broad bean (Vicia faba L.). Plant Science, 155 (2), 169-178. https://doi.org/10.1016/S0168-9452(00)00216-8
 Gallegos, J. E., & Rose, A. B. 2015. The enduring mystery of intron-mediated enhancement. Plant Science, 237, 8-15. https://doi.org/10.1016/j.plantsci.2015.04.017
Gao, S., Fang, J., Xu, F., Wang, W., Sun, X., Chu, J., & Chu, C. 2014. CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiology, 165 (3), 1035-1046. https://doi.org/10.1104/pp.114.238584
Gidekel, M., Jimenez, B., & Herrera-Estrella, L. 1996. The first intron of the Arabidopsis thaliana gene coding for elongation factor 1β contains an enhancer-like element. Gene, 170 (2), 201-206. . https://doi.org/10.1016/0378-1119(95)00837-3
Gong, P., Wei, R., Li, Y., Wang, R., Tang, Y., Wang, L., &Zhang, C. 2019. Molecular cloning and functional characterization of a seed-specific VvβVPE gene promoter from Vitis vinifera. Planta, 250 (2), 657-665. https://doi.org/10.1007/s00425-019-03197-0
Grichko, V. P., Filby, B., & Glick, B. R. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. Journal of Biotechnology, 81 (1), 45-53. https://doi.org/10.1016/S0168-1656(00)00270-4
 Griffiths, A. J., Gelbart, W. M., Miller, J. H., & Lewontin, R. C. 1999. Regulation of the lactose system. In Modern Genetic Analysis: WH Freeman.
Griffiths, A. J., Gelbart, W. M., Lewontin, R. C., & Miller, J. H. 2002. Modern Genetic Analysis: integrating genes and genomes . The Quarterly Review of Biology, 77 (4) , 448 . https://doi.org/10.1086/374462
Grotewold, E., & Springer, N. 2018. The Plant Genome: Decoding the Transcriptional Hardwiring. Annual Plant Reviews Online, 196-228. https://doi.org/10.1002/9781119312994.apr0377
Gudynaite‐Savitch, L., Johnson, D. A., & Miki, B. L. 2009. Strategies to mitigate transgene–promoter interactions. Plant Biotechnology Journal, 7 (5), 472-485. https://doi.org/10.1111/j.1467-7652.2009.00416.x
Gurr, S. J., & Rushton, P. J. 2005. Engineering plants with increased disease resistance: how are we going to express it? Trends in biotechnology, 23 (6), 283-290.https://doi.org/10.1016/j.tibtech.2005.04.009
Hajiahmadi, Z., Shirzadian-Khorramabad, R., Kazemzad, M., & Sohani, M. M. 2017. 'In silico'analysis and transient expression of wound-inducible promoter'MPI'in tomato ('Lycopersicon esculentum'Mill. cv. CH). Plant Omics, 10 (3), 118. https://doi.org/10.21475/poj.10.03.17.pne411
Halpin, C. 2005. Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnology Journal, 3 (2), 141-155. https://doi.org/10.1111/j.1467-7652.2004.00113.x
Han, L., Han, Y.-N., & Xiao, X.-G. 2013. Truncated cotton subtilase promoter directs guard cell-specific expression of foreign genes in tobacco and Arabidopsis. PLoS One, 8(3), e59802. https://doi.org/10.1371/journal.pone.0059802
Holtorf, S., Apel, K., & Bohlmann, H. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Molecular Biology, 29 (4), 637-646. https://doi.org/10.1007/BF00041155
Hsieh, T.-H., Lee, J.-t., Charng, Y.-y., & Chan, M.-T. 2002. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology, 130 (2), 618-626. https://doi.org/10.1104/pp.006783
Hsieh, T. H., Lee, J. T., Yang, P. T., Chiu, L. H., Charng, Y. Y., Wang, Y. C., & Chan, M. T. 2004. Erratum: Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology, 135 (2). https://doi.org/10.1104/pp.003442
Huang, L.-y., Zhang, F., Qiao, Q., WANG, W.-s., Zhang, T., & FU, B.-y. 2015. Identification and validation of root-specific promoters in rice. Journal of Integrative Agriculture, 14 (1), 1-10. https://doi.org/10.1016/S2095-3119(14)60763-2
Huo, X., Wu, S., Zhu, Z., Liu, F., Fu, Y., Cai, H., & Tan, L. 2017. NOG1 increases grain production in rice. Nature Communications, 8 (1), 1-11. https://doi.org/10.1038/s41467-017-01501-8.
Jeon, J.-S., Lee, S., Jung, K.-H., Jun, S.-H., Kim, C., & An, G. 2000. Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiology, 123 (3), 1005-1014. https://doi.org/10.1104/pp.123.3.1005
Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. 2004. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 45 (3), 346-350. https://doi.org/10.1093/pcp/pch037
Kato, H., Xie, G., Sato, Y., & Imai, R. 2010. Isolation of anther-specific gene promoters suitable for transgene expression in rice. Plant Molecular Biology Reporter, 28 (3), 381-387. https://doi.org/10.1007/s11105-009-0162-8
Kay, R., Chan, A., Daly, M., & McPherson, J. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science, 236 (4806), 1299-1302. https://doi.org/10.1126/science.236.4806.1299
Khurana, R., Kapoor, S., & Tyagi, A. K. 2012. Anthology of anther/pollen-specific promoters and transcription factors. Critical Reviews in Plant Sciences, 31 (5), 359-390 https://doi.org/10.1080/07352689.2012.664986.
Kim, A. Y., Kim, H. M., Ma, S. H., Park, S. Y., Dat, M. T., Jang, G., & Joung, Y. H. 2019. The promoter of tomato HISTIDINE DECARBOXYLASE A is fruit-specific, and its expression is stably maintained in fruits during ripening. Plant Biotechnology Reports, 13 (1), 43-50. https://doi.org/10.1007/s11816-018-00512-1
Kim, D.-H., Park, S., Lee, J.-Y., Ha, S.-H., & Lim, S.-H. 2018. Enhancing flower color through simultaneous expression of the B-peru and mPAP1 transcription factors under control of a flower-specific promoter. International Journal of Molecular Sciences, 19 (1), 309. https://doi.org/10.3390/ijms19010309
Kim, M. J., Kim, H., Shin, J. S., Chung, C.-H., Ohlrogge, J. B., & Suh, M. C. 2006. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Molecular Genetics and Genomics, 276 (4), 351-368. https://doi.org/10.1007/s00438-006-0148-2
Krebs, J. E., Goldstein, E. S., & Kilpatrick, S. T. 2017. Lewin's genes XII: Jones & Bartlett Learning.
Lalonde, B., Arcangioli, B., & Guarente, L. 1986. A single Saccharomyces cerevisiae upstream activation site (UAS1) has two distinct regions essential for its activity. Molecular and cellular biology, 6 (12), 4690-4696. https://doi.org/10.1128/mcb.6.12.4690-4696.1986
Laplaze, L., Svistoonoff, S., Santi, C., Auguy, F., Franche, C., & Bogusz, D. 2007. Molecular biology of actinorhizal symbioses. In Nitrogen-fixing Actinorhizal Symbioses, 235-259. https://doi.org/10.1007/978-1-4020-3547-0_9
Lawson, T., & Matthews, J. 2020. Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71, 273-302. https://doi.org/10.1146/annurev-arplant-050718-100251
Li, A. X., Han, Y. Y., Wang, X., Chen, Y. H., Zhao, M. R., Zhou, S.-M., & Wang, W. 2015. Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environmental and Experimental Botany, 110, 73-84. https://doi.org/10.1016/j.plantsci.2005.04.006
Li, D., Xu, R., Lv, D., Zhang, C., Yang, H., Zhang, J., & Tan, X. 2020. Identification of the Core Pollen-Specific Regulation in the Rice OsSUT3 Promoter. International Journal of Molecular Sciences, 21 (6), 1909. https://doi.org/10.3390/ijms21061909
Li, R., Jia, X., & Mao, X. 2005. Ethanol-inducible gene expression system and its applications in plant functional genomics. Plant Science, 169 (3), 463-469. https://doi.org/10.1016/j.plantsci.2005.04.006
Li, Y., Li, C., Cheng, L., Yu, S., Shen, C., & Pan, Y. 2019. Over-expression of OsPT2 under a rice root specific promoter Os03g01700. Plant Physiology and Biochemistry, 136, 52-57. https://doi.org/10.1016/j.plaphy.2019.01.009
Li, Z., Jayasankar, S., & Gray, D. 2001. Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Science, 160 (5), 877-887. https://doi.org/10.1016/S0168-9452(01)00336-3
 Li, Z. T., Jayasankar, S., & Gray, D. 2004. Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco. Transgenic research, 13 (2), 143-154. https://doi.org/10.1023/B:TRAG.0000026074.11859.77
Liu, F., Wang, Z., Ren, H., Shen, C., Li, Y., Ling, H. Q., & Wu, P. 2010. OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. The Plant Journal, 62 (3), 508-517. https://doi.org/10.1111/j.1365-313X.2010.04170.x
Liu, X., Yang, W., Mu, B., Li, S., Li, Y., Zhou, X., & Chen, R. 2018. Engineering of ‘Purple Embryo Maize’with a multigene expression system derived from a bidirectional promoter and self‐cleaving 2A peptides. Plant Biotechnology Journal, 16 (6), 1107. https://doi.org/10.1111/pbi.12883
Makhzoum, A., Benyammi, R., Moustafa, K., & Trémouillaux-Guiller, J. 2014. Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming. BioDrugs, 28 (2), 145-159. https://doi.org/10.1007/s40259-013-0062-1
Manna, M., Achary, V. M. M., Islam, T., Agrawal, P. K., & Reddy, M. K. 2016. The development of a phosphite-mediated fertilization and weed control system for rice. Scientific Reports, 6, 24941. https://doi.org/10.1038/srep24941
McElroy, D., Rothenberg, M., Reece, K. S., & Wu, R. 1990a. Characterization of the rice (Oryza sativa) actin gene family. Plant Molecular Biology, 15 (2), 257-268. https://doi.org/10.1007/BF00036912
McElroy, D., Zhang, W., Cao, J., & Wu, R. 1990b. Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell, 2 (2), 163-171.
Mehrotra, R., Gupta, G., Sethi, R., Bhalothia, P., Kumar, N., & Mehrotra, S. 2011. Designer promoter: an artwork of cis engineering. Plant Molecular Biology, 75(6), 527-536. https://doi.org/10.1007/s11103-011-9755-3
Millwood, R. J., Moon, H. S., Poovaiah, C. R., Muthukumar, B., Rice, J. H., Abercrombie, J. M., & Stewart Jr, C. N. 2016. Engineered selective plant male sterility through pollen‐specific expression of the Eco RI restriction endonuclease. Plant Biotechnology Journal, 14 (5), 1281-1290. https://doi.org/10.1111/pbi.12493
Morello, L., Bardini, M., Cricrì, M., Sala, F., & Breviario, D. 2006. Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene. Planta, 223 (3), 479-491. https://doi.org/10.1007/s00425-005-0105-z
Napier, J. A., Olsen, R. E., & Tocher, D. R. 2019. Update on GM canola crops as novel sources of omega‐3 fish oils. Plant Biotechnology Journal, 17 (4), 703. https://doi.org/ 10.1111/pbi.13045
Naqvi, S., Farré, G., Sanahuja, G., Capell, T., Zhu, C., & Christou, P. 2010. When more is better: multigene engineering in plants. Trends in Plant Science, 15 (1), 48-56. https://doi.org/10.1016/j.tplants.2009.09.010
Nuccio, M. L. 2018. A brief history of promoter development for use in transgenic maize applications. Methods in Molecular Biology,1676, 61-93. https://doi: 10.1007/978-1-4939-7315-6_4
Nunberg, A. N., Li, Z., Bogue, M. A., Vivekananda, J., Reddy, A. S., & Thomas, T. L. 1994. Developmental and hormonal regulation of sunflower helianthinin genes: proximal promoter sequences confer regionalized seed expression. The Plant Cell, 6 (4), 473-486. https://doi.org/10.1105/tpc.6.4.473
Odell, J. T., Nagy, F., & Chua, N.-H. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 313 (6005), 810-812. https://doi.org/10.1038/313810a0
Padidam, M., Gore, M., Lu, D. L., & Smirnova, O. 2003. Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Research, 12 (1), 101-109. https://doi.org/10.1023/A:1022113817892
Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., & 
Silverstone, A. L. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology, 23 (4), 482. https://doi.org/10.1038/nbt1082
Parra, G., Bradnam, K., Rose, A. B., & Korf, I. 2011. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Research, 39 (13), 5328-5337. https://doi.org/10.1093/nar/gkr043
Peremarti, A., Twyman, R. M., Gómez-Galera, S., Naqvi, S., Farré, G., Sabalza, M., & Ramessar, K. 2010. Promoter diversity in multigene transformation. Plant Molecular Biology, 73 (4-5), 363-378. https://doi.org/10.1007/s11103-010-9628-1
Pino, M. T., Skinner, J. S., Park, E. J., Jeknić, Z., Hayes, P. M., Thomashow, M. F., & Chen, T. H. 2007. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology Journal, 5 (5), 591-604. https://doi.org/10.1111/j.1467-7652.2007.00269.x
Porto, M. S., Pinheiro, M. P. N., Batista, V. G. L., dos Santos, R. C., de Albuquerque Melo Filho, P., & de Lima, L. M. 2014. Plant promoters: an approach of structure and function. Molecular Biotechnology, 56 (1), 38-49. https://doi.org/10.1007/s12033-013-9713-1
Potenza, C., Aleman, L., & Sengupta-Gopalan, C. 2004. Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cellular & Developmental Biology-Plant, 40 (1), 1-22. https://doi.org/10.1079/IVP2003477
Quan, W., Hu, Y., Mu, Z., Shi, H., & Chan, Z. 2018. Overexpression of AtPYL5 under the control of guard cell specific promoter improves drought stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 129, 150-157. https://doi.org/10.1016/j.plaphy.2018.05.033
Redillas, M. C., Jeong, J. S., Kim, Y. S., Jung, H., Bang, S. W., Choi, Y. D., & Kim, J. K. 2012. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnology Journal, 10 (7), 792-805. https://doi.org/10.1111/j.1467-7652.2012.00697.x
Robinson, C., Lowe, M., Schwartz, A., & Kikyo, N. 2016. Mechanisms and developmental roles of promoter-proximal pausing of RNA polymerase II. Journal of Stem Cell Research and  Therapy, 6 (3). https://doi.org/10.4172/2157-7633.1000330
Romero, C., Bellés, J. M., Vayá, J. L., Serrano, R., & Culiáñez-Macià, F. A. 1997. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 201 (3), 293-297
Roque, E. M., Gómez-Mena, C., Hamza, R., Beltrán, J. P., & Cañas, L. A. 2019. Engineered male sterility by early anther ablation using the Pea anther-specific promoter PsEND1. Frontiers in Plant Science, 10, 819. https://doi.org/10.3389/fpls.2019.00819
Rose, A. B., Elfersi, T., Parra, G., & Korf, I. 2008. Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. The Plant Cell, 20 (3), 543-551. https://doi.org/10.1105/tpc.107.057190
Ruan, B., Shang, L., Zhang, B., Hu, J., Wang, Y., Lin, H., & Zhu, L. 2020. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytologist, 227 (2), 629-640. https://doi.org/10.1111/nph.16540
Rugg-Gunn, P. J. 2019. Transcription factors make the right contacts. Nature Cell Biology, 21 (10), 1173-1174. https://doi.org/10.1038/s41556-019-0399-x
Rushton, P. J. 2016. What have we learned about synthetic promoter construction? In Plant Synthetic Promoters , 1482 , 1-13. http:/doi: 10.1007/978-1-4939-6396-6_1
Samadder, P., Sivamani, E., Lu, J., Li, X., & Qu, R. 2008. Transcriptional and post-transcriptional enhancement of gene expression by the 5′ UTR intron of rice rubi3 gene in transgenic rice cells. Molecular Genetics and Genomics, 279 (4), 429-439. https://doi.org/10.1007/s00438-008-0323-8
Schenk, P. M., Remans, T., Sági, L., Elliott, A. R., Dietzgen, R. G., Swennen, R., & Manners, J. M. 2001. Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Molecular Biology, 47 (3), 399-412. https://doi.org/10.1023/A:1011680008868
Science, A. A. f. t. A. o. 2012. Statement by the AAAS board of directors on labeling of genetically modified foods. In. Retrived june 12 .from https://www.aaas.org/news/statement-aaas-board-directors-labeling-genetically-modified-foods.
Sengupta-Gopalan, C., Reichert, N. A., Barker, R. F., Hall, T. C., & Kemp, J. D. 1985. Developmentally regulated expression of the bean β-phaseolin gene in tobacco seed. Proceedings of the National Academy of Sciences, 82 (10), 3320-3324. https://doi.org/10.1073/pnas.82.10.3320
Sharma, A. K., & Sharma, M. K. 2009. Plants as bioreactors: recent developments and emerging opportunities. Biotechnology Advances, 27 (6), 811-832. https://doi.org/10.1016/j.biotechadv.2009.06.004
Shen, Q., Lu, X., Yan, T., Fu, X., Lv, Z., Zhang, F., & Tang, K. 2016. The jasmonate‐responsive Aa MYC 2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytologist, 210 (4), 1269-1281. https://doi.org/10.1111/nph.13874
Shen, S., Li, Q., He, S. Y., Barker, K. R., Li, D., & Hunt, A. G. 2000. Conversion of compatible plant–pathogen interactions into incompatible interactions by expression of the Pseudomonas syringae pv. syringae 61 hrmA gene in transgenic tobacco plants. The Plant Journal, 23 (2), 205-213. https://doi.org/10.1046/j.1365-313x.2000.00772.x
Shiva, V., Woodwell, G., & Zamora, O. B. 2000. Open Letter from World Scientists to All Governments Concerning Genetically Modified Organisms (GMOs). https://doi.org/10.13140/RG.2.1.4959.9605
Somssich, M. 2019. A short history of plant transformation ,2167-9843. https://doi.org/10.1007/978-1-0716-0356-7_3
Sridhar, V. V., Surendrarao, A., & Liu, Z. 2006. APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development, 133 (16), 3159-3166. https://doi.org/10.1242/dev.02498
Tanabe, N., Tamoi, M., & Shigeoka, S. 2015. The sweet potato RbcS gene (IbRbcS1) promoter confers high-level and green tissue-specific expression of the GUS reporter gene in transgenic Arabidopsis. Gene, 567 (2), 244-250. https://doi.org/10.1016/j.gene.2015.05.006
Tavva, V. S., Dinkins, R. D., Palli, S. R., & Collins, G. B. 2006. Development of a methoxyfenozide‐responsive gene switch for applications in plants. The Plant Journal, 45 (3), 457-469. https://doi.org/10.1111/j.1365-313X.2005.02628.x
Tissier, A. 2018. Harnessing plant trichome biochemistry for the production of useful compounds. Molecular pharming: applications, challenges, and emerging areas. Hoboken: Wiley, 353-382.
Twell, D., Yamaguchi, J., Wing, R. A., Ushiba, J., & McCormick, S. 1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes & Development, 5 (3), 496-507. https://doi.org/10.1101/gad.5.3.496.
Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., & Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences, 97 (21), 11632-11637. https://doi.org/10.1073/pnas.190309197.
Urwin, P. E., Møller, S. G., Lilley, C. J., McPherson, M. J., & Atkinson, H. J. 1997. Continual green-fluorescent protein monitoring of cauliflower mosaic virus 35S promoter activity in nematode-induced feeding cells in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 10 (3), 394-400. https://doi.org/10.1094/MPMI.1997.10.3.394
Van der Geest, A. H., & Hall, T. C. 1997. The β-phaseolin 5′ matrix attachment region acts as an enhancer facilitator. Plant Molecular Biology, 33(3), 553-557. https://doi.org/10.1023/a:1005765525436
Venter, M. 2007. Synthetic promoters: genetic control through cis engineering. Trends in Plant Science, 12 (3), 118-124. https://doi.org/ 10.1016/j.tplants.2007.01.002
Venter, M., & Botha, F. 2010. Synthetic promoter engineering. In Plant Developmental Biology-Biotechnological Perspectives .(1st ed.) , 2 , 393-414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04670-4_20chen
Chong Pua & Michael R. DaveyVerma, D., Singla-Pareek, S. L., Rajagopal, D., Reddy, M., & Sopory, S. 2007. Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. Journal of Biosciences, 32 (3), 621-628. https://doi.org/ 10.1007/s12038-007-0061-9
Wang, M., Yan, W., Peng, X., Chen, Z., Xu, C., Wu, J., & Tang, X. 2020. Identification of late‐stage pollen‐specific promoters for construction of pollen‐inactivation system in rice. Journal of Integrative Plant Biology, 8 (62), 1246-1263.https://doi.org/10.1111/jipb.12912
Wang, R., Zhu, M., Ye, R., Liu, Z., Zhou, F., Chen, H., & Lin, Y. 2015. Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice. Scientific Reports, 5, 18256. https://doi.org/10.1038/srep18256
Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., & Schmülling, T. 2010. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. The Plant Cell, 22 (12), 3905-3920. https://doi.org/10.1105/tpc.109.072694
Yamamoto, Y. Y., Yoshioka, Y., Hyakumachi, M., & Obokata, J. 2011. Characteristics of core promoter types with respect to gene structure and expression in Arabidopsis thaliana. DNA Research, 18 (5), 333-342. https://doi.org/10.1093/dnares/dsr020
Ye, R., Huang, H., Yang, Z., Chen, T., Liu, L., Li, X., & Lin, Y. 2009. Development of insect‐resistant transgenic rice with Cry1C*‐free endosperm. Pest Management Science, 65 (9), 1015-1020. https://doi.org/10.1002/ps.1788
Yi, N., Kim, Y. S., Jeong, M.-H., Oh, S.-J., Jeong, J. S., Park, S.-H., & Kim, J.-K. 2010. Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta, 232 (3), 743-754. https://doi.org/10.1007/s00425-010-1212-z
Yue, Y., Yin, C., Guo, R., Peng, H., Yang, Z., Liu, G., & Hu, H. 2017. An anther-specific gene PhGRP is regulated by PhMYC2 and causes male sterility when overexpressed in petunia anthers. Plant Cell Reports, 36 (9), 1401-1415.https://doi.org/10.1007/s00299-017-2163-7.
Zabidi, M. A., & Stark, A. 2016. Regulatory enhancer–core-promoter communication viatranscription factors and cofactors. Trends in Genetics,32­­­ (12), 801-814. https://doi.org/10.1016/j.tig.2016.10.003
Zhong, R., Demura, T., & Ye, Z.-H. 2006. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell, 18 (11), 3158-3170. https://doi.org/10.1105/tpc.106.047399
Zhu, Q., Yu, S., Zeng, D., Liu, H., Wang, H., Yang, Z., & Li, H. 2017. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Molecular Plant,10 (7), 918-929. https://doi.org/10.1016/j.molp.2017.05.008
 Zuo, J., & Chua, N.-H. 2000. Chemical-inducible systems for regulated expression of plant genes. Current Opinion in Biotechnology,­­­­11 (2), 146-151. https://doi.org/10.1016/S0958-1669(00)00073-2