AACC. 2010. AACC method 08-01.01, Ash—basic method. In: AACC approved methods of analysis, 11th edn. Cereals & Grains Association, Minnesota. http://dx.doi.org/10.1094/AACCIntMet hod-08-01.01
Abdel-Aal, E. M., & Choo, T. M. 2014. Differences in compositional properties of a hulless barley cultivar grown in 23 environments in eastern Canada. Canadian Journal of Plant Science, 94, 807815. https://doi.org/10.4141/cjps2013-301
Abdollahzadeh, N., Fotovat, R., Shekari, F., & Alavi Siney, M. 2017. Genetic evaluation of root traits for doubled haploid lines of barely in normal and salt stress conditions. Journal of Crop Breeding, 9(21), 115-121. http://dx.doi.org/10.29252/jcb.9.21.115. [in persian]
Alijošius, S., Švirmickas, G.J., Kliševičiūtė, V., Gružauskas, R., Šašytė, V., Racevičiūtė-Stupelienė A., Daukšienė, A., & Dailidavičienė, J. 2016. The chemical composition of different barley varieties grown in lithuania. Veterinarija ir zootechnika (Vet Med Zoot), 73 (95). https://www.researchgate.net/publication/311434685
Alipour Kondari, H., & Arzani, A. 2021. Evaluation of heterosis and heritability of yield and yield components in bread wheat, durum wheat and triticale. Crop Production, 13(3), 107-118. https://dx.doi.org/10.22069/ejcp.2021.17900.2317. [in persian]
Al Lawati, A. H., Nadaf, S.K., AlSaady, N.A., Al Hinai, S.A., Almamari, A.R., & Al Maawali, A.A. 2021. Genetic diversity of Omani barley (Hordeum vulgare L.) germplasm. Open Agriculture, 6, 628–639. https://doi.org/10.1515/opag-2021-0038
Afshari-Behbahanizadeh, S., Akbari, Gh. A., Shahbazi, M., Alahdadi1, I., Farahani, L., Tabatabaee, S. A., & Ganji, M. 2016. Qualitative and physical properties of barley grains under terminal drought stress conditions. Journal of Agricultural Science and Technology, 18, 1303-1317. http://dorl.net/dor/20.1001.1.16807073.2016.18.5.14.0
Amiri, R., Bahraminejada, S., Sasani, S., Jalali-Honarmanda, S., & Fakhri, R. 2015. Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. European Journal of Agronomy, 67, 20-26. https://doi.org/10.1016/j.eja.2015.03.004
AOAC. 1995. Official Methods of Analysis of the Association of Official Analytical Chemist, 16th Edition, Association of Official Analytical Chemists, Washington, DC, USA.
AOAC.2005. Official Method of Analysis of the Association of Analytical Chemists. 18th Edition, Association of Official Analytical Chemists, Washington DC.
Asfaw, A., Aderonmu, D.S., Darkwa, K., De Koeyer, D., Agre, P., Abe, A., Olasanmi, B., Adebola, P., & Asiedu, R. 2021. Genetic parameters, prediction, and selection in a white Guinea yam early generation breeding population using pedigree information. Crop Science, 61, 1038–1051. https://doi.org/10.1002/csc2.20382
Astaraki, H., Sharifi, P., & Sheikh, F. 2020. Estimation of genotypic correlation and heritability of some of traits in faba bean genotypes using restricted maximum likelihood (REML). Plant Genetic Researches, 6(2), 111-128. [in persian]. http://dx.doi.org/10.29252/pgr.6.2.111
Avni, R., Zhao, R., Pearce, S., Jun, Y., Uauy, C., Tabbita, F., Fahima, T., Slade, A., Dubcovsky, J., & Distelfeld, A. 2014. Functional characterization of GPC-1 genes in hexaploid wheat. Planta, 239, 313–324. https://doi.org/10.1007/s00425-013-1977-y
Beikzadeh, H., Alavi Siney, S. M., Bayat, M., & Ezady, A. A. 2013. Estimation of genetic parameters of effective agronomical traits on yield in some of iranian rice cultivar. Agronomy Journal (Pajouhesh & Sazandegi), 104, 73-78. https://dx.doi.org/10.22092/aj.2015.105678. [in persian]
Begna, T. 2021. Role and economic importance of crop genetic diversity in food security. Journal of Agricultural Science and Food Technology, 7(1), 164-169. https://doi.org/10.17352/2455-815x.000104
Bhandari, H. R., Nishant Bhanu, A., Srivastava, K., Singh, M. N., Shreya, & Hemantaranjan, A. 2017. Assessment of genetic diversity in crop plants – an overview. Advances in Plants & Agriculture Research, 7(3), 279‒286. http://dx.doi.org/10.15406/apar.2017.07.00255
Bradstreet, R.B. 1954. Kjeldahl method for organic nitrogen. Analytical Chemistry, 26, 185-187.
Burton, G. W. 1952. Quantitative inheritance in grasses. Proceeding of 6th International Grassland Congress. Pennsylvania State College, State College. 1, 277-283.
Cai, S., Yu, G., Chen, X., Huang, Y., Jiang, X., Zhang, G., & Jin, X. 2013. Grain protein content variation and its association analysis in barley. BMC Plant Biology, 13:35 http://www.biomedcentral.com/1471-2229/13/35
Chebib, J., & Guillaume, F. 2021. Pleiotropy or linkage? Their relative contributions to the genetic correlation of quantitative traits and detection by multitrait GWA studies. Genetics, 219 (4), iyab159. https://doi.org/10.1093/genetics/iyab159
Derbew, S. 2020. Multivariate analysis of hulled barley (Hordeum vulgare L.) landraces of Southern Ethiopia. Cogent Food & Agriculture, 6(1). https://doi.org/10.1080/23311932.2020.1841357
El-Sabagh, A., Hossain, A., Islam, Md.S., Barutcular, C., Hussain, S., Hasanuzzaman, M., Akram, T., Mubeen, M., Nasim, W., Fahad, S., Kumar, N., Meena, R.S., Kızılgeçi, F., Yıldırım, M., Ratnasekera, D., & Saneoka, H. 2019. Drought and salinity stresses in barley: Consequences and mitigation strategies. Australian Journal of Crop Science, 13(06), 810-820. https://www.researchgate.net/publication/334225477
Emilia-ancuța, B., Muntean, L., Russu, F., Daniela ona, A., Porumb, I., & Filip, E. 2019. Barley (Hordeum Vulgare L.): medicinal and therapeutic uses – review. Hop and Medicinal Plants, 1-2, 87-95. https://www.researchgate.net/publication/353495756
Falconer, D. S. 1989. Introduction to quantitative genetics. 3rd edition. Logman Scientific and Technical, Logman House, Burnt Mill, Harlow, Essex, England. 464 pp.
Fan, Y., Shabala, S., Ma, Y., Xu, R., & Zhou, M. 2015. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics, 16:43. http://creativecommons.org/publicdomain/zero/1.0/
FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. https://www.fao.org/faostat/en/#home
Gebregergs, G., & Mekbib, F. 2020. Estimation of genetic variability, heritability, and genetic advance in advanced lines for grain yield and yield components of sorghum (Sorghum bicolor (L.) Moench) at Humera, Western Tigray, Ethiopia. Cogent Food & Agriculture, 6, 1764181. http://dx.doi.org/10.1080/23311932.2020.1764181
Hadado, T. T., Rau1, D., Bitocch, E., & Papa, R. 2010. Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis. BMC Plant Biology, 10:121. http://www.biomedcentral.com/1471-2229/10/121
Hagenblad, J., Vanhala1, T., Madhavan, Sh., & Leino, M. W. 2022. Protein content and HvNAM alleles in Nordic barley (Hordeum vulgare) during a century of breeding. Hereditas, 159:12. https://doi.org/10.1186/s41065-022-00227-y
Heidarinejad, H., Ismaili, A., Hosseinpour, T., & Eisvand, H. R. 2018. Factor analysis genetic correlation and path analysis of different traits in durum wheat genotypes. Journal of Plant Ecophysiology, 10(33), 117-126. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=474629 [in persian]
Iannucci, A., Suriano, S., & Codianni, P. 2021. Genetic diversity for agronomic traits and phytochemical compounds in coloured naked barley lines. Plants, 10, 1575. https://doi.org/10.3390/plants10081575
Ismaili, A., Nourozi Asl, A., Zebarjadi, A., Drikvand, R. & Azizi, Kh. 2013. Study on heritability and path analysis of different traits, seed yield and oil yield of canola in climatically condition of KhoramAbad, Iran. Agronomy Journal (Pajouhesh & Sazandegi). 28(106), 162-170. https://www.sid.ir/en/journal/ViewPaper.aspx?id=527908 [in persian]
Izadi, S., Cheghamirza, K., & Kahrizi, D. 2017. Anther culture response and genetic relationships between Iranian and European barley (Hordeum vulgare L.) cultivars. Journal of Biotechnology, Computational Biology and Bionanotechnology, 98(4), 295-304. https://doi.org/10.5114/bta.2017.72290
Jalata, Z., Ayana, A., & Zeleke, H. 2011. Variability, heritability and genetic advance for some yield and yield related traits in Ethiopian barley (Hordeum vulgare L.) landraces and crosses. International Journal of Plant Breeding and Genetics, 5(1), 44-52. https://dx.doi.org/10.3923/ijpbg.2011.44.52
Johnson, H. W., Robinson, H. F., & Comstock, R. E. 1955. Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47(7), 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009x
Kaur, V., Aravind, J., Manju., Jacob, S. R., Kumari, J., Panwar,. B. S., Pal, N., Rana, J. C., Pandey, A., & Kumar, A. 2022. Phenotypic characterization, genetic diversity assessment in 6,778 accessions of barley (Hordeum vulgare L. ssp. vulgare) germplasm conserved in national genebank of India and development of a core set. Frontiers in Plant Science., 13:771920. 17pp. https://doi.org/10.3389/fpls.2022.771920
Liu, H., Wang, Z., Li, F., Li, K., Yang, N, Yang, Y., Huang, D., Liang, D., Zhao, H., Mao, H., Liu, J., & Qiu, W. 2014. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Research, 156, 151–160. https://www.researchgate.net/publication/259515455
Magliano, P. N., Prystupa, P., & Gutiérrez-Boem, F. H. 2014. Protein content of grains of different size fractions in malting barley. Institute of Brewing & Distilling, 120, 347–352. https://doi.org/10.1002/jib.161
Moradi, M. & Soltani Howyzeh, M. 2018. Evaluation of genetic diversity and heritability of the grain yield and yield components in spring rapeseed cultivars. Journal of Crop Breeding, 10(26), 207-214. https://www.sid.ir/en/journal/ViewPaper.aspx?id=738383 [in persian]
Naseri Myankali, R., Cheghamirza, K., Zarei, L., & Saroei, E. 2017(a). Evaluation of relationship between the associated traits with callus induction of mature embryo and agronomic traits in different barley genotypes (Hordeum vulgare L.). Cereal Research, 7(3), 421-435. https://dorl.net/dor/20.1001.1.22520163.1396.7.3.9.8 [in persian]
Naseri Myankali, R., Cheghamirza, K., Zarei, L., & Saroei, E. 2017(b). Induced dedifferentiation of barley (Hordeum vulgare L.) embryonic cells and its relationship with agronomic traits. Cellular and Molecular Biology, 63(10), 11-19. https://doi.org/10.14715/cmb/2017.63.10.3
Negash, G., Lule, D., & Jalata, Z. 2021. Estimation of genetic variability, heritability and genetic advance among Ethiopian food barley (Hordeum vulgare L) landraces for yield and yield related traits. International Journal of Agriculture and Agricultural Sciences, 6(3), 185-192. https://advancedscholarsjournals.org
Mahmoodi, B., Bahraminejad, S., & Fakhri, R. 2016. Genetic diversity of oat genotypes for iron and zinc content under complete irrigation and terminal moisture stress conditions. Iranian Journal of Field Crops Research, 14(3), 415-426. https://jcesc.um.ac.ir/article_37665.html?lang=en [in persian]
Pezeshkpour, P., & Afkar, S. 2018. The study of genetic diversity, heritability and genetic advance of morphological traits, yield and yield components in different chickpea (Cicer arietinum) genotypes. Journal of Crop Breeding, 9(24), 61-68. [in persian] https://www.sid.ir/en/journal/ViewPaper.aspx?id=739586
Saroei, E., Cheghamirza, K., & Zarei, L. 2017. Genetic diversity of characteristics in barley cultivars. Genetika, 49(2), 495-510. https://doi.org/10.2298/GENSR1702495S
Shahmoradi, S., Chaeichi M. R., Mozafar, J., Mazaheri, D., & Sharifzadeh, F. 2013. Evaluation of genetic and geographic diversity of wild barley (Hordeum spontaneum L.) ecotypes from different habitats in iran. Iranian Journal of Field Crop Science, 44(2), 209-225. https://www.researchgate.net/publication/328278542 [in persian]
Shiferaw, T., Abate, B., & Lakew, B. 2020. Genetic variability and association of traits in Ethiopian barley (Hordeum vulgare L.) genotypes at Holetta, Central Ethiopia. Journal of Agricultural and Crop Research, 8(1), 11-19. https://doi.org/10.33495/jacr_v8i1.19.171
Shrimali, J., Shekhawat, A.S., & Kumari S. 2017. Genetic variation and heritability studies for yield and yield components in barley genotypes under normal and limited moisture conditions. Journal of Pharmacognosy and Phytochemistry, 6(4), 233-235. http://dx.doi.org/10.5539/jas.v4n3p193
Singh, R. K., & Chaudhary, B.D. 2004. Biometrical methods in quantitative genetic analysis. Kalyani Publishers, New Delhi, India.
Sullivan, P., Arendt, E., & Gallagher, E. 2013. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends in Food Science & Technology, 29,124-134. https://doi.org/10.1016/j.tifs.2012.10.005
Teixeira, C., Nyman, M., Anderssonc, R., & Almingera, M. 2016. Effects of variety and steeping conditions on some barley components associated with colonic health. Journal of the Science of Food and Agriculture, 96, 4821–4827. https://doi.org/10.1002%2Fjsfa.7923
Tessema, G. L., Mohammed, A. W., & Abebe, D. T. 2022. Genetic variability studies for tuber yield and yield attributes in Ethiopian released potato (Solanum tuberosum L.) varieties. Peer Journals, 10: e12860. https://doi.org/10.7717/peerj.12860
Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., & Dubcovsky, J.A. 2006. NAC gene regulating senescence improves grain protein, zinc and irons content in wheat. Science, 24; 314(5803): 1298–1301. https://doi.org/10.1126/science.1133649
Usubaliev, B., Kolodinska brantestam, A., Kurmanbekova, G., Chekirov, K., Totubaeva, N., & von bothmer, R. 2020. Agronomic performance of spring barley cultivars under different eco-environmental conditions. Polish Journal of Environmental Studies, 29(6), 4331-4344. https://doi.org/10.15244/pjoes/117654
Waters, B.M., Uauy, C., Dubcovsky, J., & Grusak, M.A., 2009. Wheat (Triticum aestivum)
NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds
from vegetative tissues to grain. Journal of Experimental Botany, 60 (15), 4263–4274. https://doi.org/10.1093/jxb/erp257
Yaghobfar, A., Ghaffari, S.A., & Yousefi, A. 2013. Determination nutritive value of hull-less barley cultivars used in poultry nutrition. Animal Sciences Journal (Pajouhesh & Sazandegi), 97, 15-23. https://www.sid.ir/en/journal/ViewPaper.aspx?id=311191. [in persian]
Zohary, D., Hopf, M., & Weiss, E. 2012. Domestication of plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press on Demand. DOI: 10.1093/acprof:os obl/9780199549061.001.0001