بررسی صفات فیزیولوژیک ژنوتیپ‌های کینوا (Chenopodium quinoa Willd.) در شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد علوم و تکنولوژی بذر، دانشکده کشاورزی، دانشگاه گیلان، گیلان، ایران

2 استادیار، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی واحد رشت، گیلان، ایران

چکیده

مقدمه: یکی از چالش‌های اساسی در مقیاس جهانی کاهش عملکرد گیاهان به دلیل شوری خاک است. 97/5 درصد آب جهان شور است و همچنین بسیاری از نواحی زمین‌های شور دارند. فعالیت‌های انسانی این چالش را شدیدتر می‌کند. شوری یکی از مسائل اصلی تأثیرگذار روی میزان عملکرد گیاهان زراعی در سطح جهان بوده و بیش از هفت درصد زمین‌های مسطح شور هستند. برتری تغذیه‌ای کینوا از زمان‌های قدیم در امپراتوری اینکا شناخته شده است. اهمیتی که کینوا می‌تواند در تغذیه ایفا کند نه تنها در کشورهای در حال توسعه بلکه در کشورهای توسعه یافته مورد تاکید است. بذرهای کینوا دارای ارزش غذایی بالاتر از بسیاری از دانه‌های غلات و حاوی پروتئین با کیفیت بالاتر و مقادیر زیادی از کربوهیدرات‌ها، چربی، ویتامین‌ها و مواد معدنی است. کینوا سطوح بالایی از مقاومت در برابر تعدادی از عوامل نامطلوب غالب مانند شوری خاک، خشکسالی، سرما، بیماری‌ها و آفات را نشان می‌دهد.
مواد و روش‌ها: در اﻳﻦ ﻣﻄﺎﻟﻌﻪ اﺛﺮات ﻓﻴﺰﻳﻮﻟﻮژﻳﻚ ﺗﻨﺶ ﺷﻮری ﺑﺮ دو رﻗﻢ کینوا در مرحله جوانه زنی ﻣﻮرد ﺑﺮرﺳﻲ ﻗﺮار ﮔﺮﻓﺖ. ژﻧﻮﺗﻴﭗﻫﺎی ﻣﻮرد ﺑﺮرﺳﻲ ﺷﺎﻣﻞ Sajama و Titicaca ﺑﻮدﻧﺪ و ﺳﻄﻮح ﺷﻮری (NaCl) صفر، 4، 6، 8، 10 و 12 دﺳﻲزﻳﻤﻨﺲ ﺑﺮ ﻣﺘﺮ اﻋﻤﺎل ﮔﺮدﻳﺪ. اﻳﻦ آزﻣﺎﻳﺶ ﺑﻪ ﺻﻮرت ﻓﺎﻛﺘﻮرﻳﻞ در ﻗﺎﻟﺐ ﻃﺮح ﻛﺎﻣﻼً ﺗﺼﺎدﻓﻲ در ﺳﺎل 1395 در آزﻣﺎﻳﺸﮕﺎه داﻧﺸﻜﺪه ﻛﺸﺎورزی داﻧﺸﮕﺎه گیلان اﺟﺮا ﮔﺮدﻳﺪ. ﺻﻔﺎت درﺻﺪ ﺟﻮاﻧﻪزﻧﻲ، ﻃﻮل رﻳﺸﻪﭼﻪ، ﻃﻮل ﺳﺎﻗﻪﭼﻪ، وزنﺗﺮ ﮔﻴﺎﻫﭽﻪ، ﺗﺠﻤﻊ ﻣﺎﻟﻮن دی‌آﻟﺪﻫﻴﺪ، ﻛﺎﺗﺎﻻز و ﭘﺮاﻛﺴﻴﺪاز اﻧﺪازهﮔﻴﺮی ﺷﺪﻧﺪ.
یافته‌ها: ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ از ﺗﺠﺰﻳﻪ وارﻳﺎﻧﺲ ﻧﺸﺎن داد ﻛﻪ ﺑﺮای ﺻﻔﺎت ﻣﺨﺘﻠﻒ اﺛﺮات رﻗﻢ، ﺷﻮری و اﺛﺮات ﻣﺘﻘﺎﺑﻞ ﻣﻌﻨﻲدار ﺷﺪﻧﺪ. ﻃﺒﻖ ﻧﺘﺎﻳﺞ درﺻﺪ ﺟﻮاﻧﻪزﻧﻲ، ﻃﻮل رﻳﺸﻪﭼﻪ، ﻃﻮل ﺳﺎﻗﻪﭼﻪ و وزنﺗﺮ ﮔﻴﺎﻫﭽﻪ ﺑﺎ اﻓﺰاﻳﺶ ﺳﻄﻮح ﺷﻮری ﻛﺎﻫﺶ ﻳﺎﻓﺘﻨﺪ. درﺻﺪ ﺟﻮاﻧﻪزﻧﻲ ژﻧﻮﺗﻴﭗ Sajama در ﺷﻮری 10 و 12 دﺳﻲزﻣﻴﻨﺲ ﺑﺮ ﻣﺘﺮ واﻛﻨﺶ ﻧﺸﺎن داد در ﺣﺎﻟﻲ ﻛﻪ، درﺻﺪ ﺟﻮاﻧﻪزﻧﻲ ژﻧﻮﺗﻴﭗ Titicaca از ﺳﻄﺢ ﺷﻮری 6 دﺳﻲزﻳﻤﻨﺲ ﺑﺮ ﻣﺘﺮ ﻛﺎﻫﺶ ﻳﺎﻓﺖ. اﻓﺰاﻳﺶ ﺳﻄﻮح ﺗﻨﺶ ﺷﻮری ﻣﻨﺠﺮ ﺑﻪ اﻓﺰاﻳﺶ ﺗﺠﻤﻊ ﻣﺎﻟﻮن دی‌آﻟﺪﻫﻴﺪ، ﻓﻌﺎﻟﻴﺖ ﭘﺮاﻛﺴﻴﺪاز و ﻛﺎﺗﺎﻻز در ژﻧﻮﺗﻴﭗهای ﻣﻮرد ﺑﺮرﺳﻲ ﮔﺮدﻳﺪ. در سطوح شوری 6 و 4 دسی‌زیمنس بر متر بالاترین میزان کاتالاز برای ژنوتیپ Sajama در مقایسه با ژنوتیـپ دیگر بدست آمد.
نتیجه‌گیری: ژﻧﻮﺗﻴپ Sajama ﺑﻪدﻟﻴﻞ ﺑﺮﺗﺮی ﺷﺎﺧﺺﻫﺎﻳﻲ ﻧﻈﻴﺮ ﻓﻌﺎﻟﻴﺖ آﻧﺰﻳﻢهای آﻧﺘﻲ اﻛﺴﻴﺪاﻧﺖ ﺑﻪﻋﻨﻮان ژﻧﻮﺗﻴﭙﻲ ﻣﺘﺤﻤﻞ ﺑﻪ ﺷﻮری ﺟﻬﺖ ﺑﺮرﺳﻲﻫﺎی ﺗﻜﻤﻴﻠﻲ ﻣﻌﺮﻓﻲ ﻣﻲﮔﺮدد. می‌توان گفت ژنوتیپ Sajama تحت تأثیر تنش شوری قادر است با حذف رادیکال‌های آزاد اکسیژن و پاکسازی محیط سلول از آن‌ها اثرات مخرب تنش شوری را تخفیف دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the physiological traits of quinoa genotypes (Chenopodium quinoa Willd.) under salt stress conditions

نویسندگان [English]

  • Hadi Kianinezhad 1
  • Mohammad Naghi Safarzadeh Vishekaei 2
1 Master of Seed Science and Technology, Faculty of Agriculture, Guilan University, Guilan, Iran
2 Department of plant cultivation and breeding, Islamic Azad University, Rasht Branch, Guilan, Iran
چکیده [English]

Introduction: One of the primary challenges that exist all over the world is the reduction of plant yield due to soil salinity. 5.97% of the world's water is saline, and also many areas have saline land. Human activities exacerbate this challenge. Salinity is one of the main issues affecting the yield of crops worldwide, and more than 7% of flat land is salty. The nutritional superiority of quinoa has been known since ancient times in the Inca Empire. The importance that quinoa can play in nutrition is emphasized not only in developing countries but also in developed countries. Quinoa seeds have a higher nutritional value than most grains and contain high-quality protein and large amounts of carbohydrates, fat, vitamins, and minerals. Quinoa shows high levels of resistance to prevailing adverse factors such as soil salinity, drought, cold, diseases, and pests.
Materials and methods: In this study, the physiological effects of salinity stress on two quinoa genotypes in the germination stage were investigated. The studied genotypes were Sajama and Titicaca. The salinity stress (NaCl) was applied at 0, 4, 6, 8, 10, and 12 decisions per meter. This experiment was carried out using a factorial design based on the completely randomized design in the laboratory of Guilan University in 2015. The measured traits were germination percentage, root length, shoot length, plant weight, Malondialdehyde (MDA) concentration, catalase, and peroxidase.
Results: The results obtained from the analysis of variance showed that the effects of genotype, salinity, and interactions were significant for different traits. According to the results, germination percentage, root length, shoot length, and plant weight decreased with increasing salinity levels. The germination percentage of the Sajama genotype showed a response at 10 and 12 decimes/m salinity, while the germination percentage of the Titicaca genotype decreased at the salinity level of 6 decimes/m. Increasing the level of salinity stress resulted in increasing the accumulation of malondialdehyde, peroxidase, and catalase activity in the examined genotypes. At salinity levels of 6 and 4 dS/m, the highest amount of catalase was obtained for Sajama genotype in comparison with other genotypes.
Conclusion: Sajama is introduced as a salinity tolerant genotype for further studies due to the superiority of indicators such as the activity of antioxidant enzymes. It can be said that the Sajama genotype under the effect of salt stress can reduce the harmful effects of salt stress by removing oxygen-free radicals and cleaning the cell environment from them.

کلیدواژه‌ها [English]

  • catalase
  • germination
  • salinity
  • quinoa
  • peroxidase
Adolf, V. I., Shabala, S. N., Andersen, M. N., Razzaghi, F. and Jacobsen, S. E. 2012. Varietal differences of quinoa’s tolerance to saline conditions. Plant and Soil 357, 117 -129. https://doi.org/10.1007/s11104-012-1133-7
Agarwal, S. and Pandey, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biology of Plant, 48: 555-560. https://doi.org/10.1023/B:BIOP.0000047152.07878.e7
Andersen, S.D., Rasmussen, L., Jensen, C.R., Mogensen, V.O., Andersen, M.N. and Jacobsen, S.-E. 1996 Leaf water relations and gas exchange of field grown Chenopodium quinoa Willd. during drought. In: Stolen, O., Pithan, K. and Hill, J. (eds) Small Grain Cereals and Pseudocereals. Workshop at KVL, Copenhagen, Denmark.
Allen, G.J., Wynjones, R.G. and Leigh, R.A. 1995. Sodium transport measured in plasma membrane vesicles isolated from wheat genotypes with differing K/Na discrimination traits. Plant Cell and Environmental, 18: 105-115. https://doi.org/10.1111/j.1365-3040.1995.tb00344.x (Journal)
Ashraf, M. and Q. Ali. 2008. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63: 266-273. https://doi.org/10.1016/j.envexpbot.2007.11.008
Appel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction.  Annual Review of PlantBiology, 55: 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Azooz, M., Ismail, A.  and Elhamd, F.  A.  2009.  Growth, lipid peroxidation and antioxidant enzyme activities as a selection criterion for the salt tolerance of three maize cultivars grown under salinity stress. International Journal of Agriculture and Biology, 11: 21-26.
Bhargava, A., Shukla, S., Katiyar, R.S. and Ohri, D. 2003. Selection parameters for genetic improvement in Chenopodium grain on sodic soil. Journal of Applied Horticulture 5, 45–48. https://doi.org/10.37855/jah.2003.v05i01.13
Bandeoglu, E., F. Eyidogan, M. Yucel and H.A. Oktem. 2004. Antioxidant response of shoots and roots of lentil to NaCl salinity stress. Plant Growth Regulation, 42: 69-77. https://doi.org/10.1023/B:GROW.0000014891.35427.7b
Bhattacharjee, S. and A.K. Mukherjee. 2002. Salt stress induced cytosolute accumulation, antioxidant response and membrane deterioration in three rice cultivars during early germination. Seed Science and Technology, 30: 279-287.
Bowler, C., Van Montagu, M. and Inze, D. 1992. Superoxide dismutase and stress tolerance.  Annual Review of Plant Physiol and Plant Molecular Biology, 43:83-116.
 Canahua, M.A. 1977. Observaciones del comportamiento de quinoa a la sequia. In: Primer Congreso Internacional sobre cultivos Andinos, Universidad Nacional San Cristobal de Huamanga, Instituto Interamericano de Ciencias Agricolas, Ayacucho, Peru, pp. 390–392.
Chance, B., and Maehly, A. 1955. “Assay of catalases and peroxidases.” Methods in Enzymology. 2: 764-775.
Delatorre-Herrera, J. and Pinto, M. 2009. Importance of ionic and osmotic components of salt stress on the germination of four quinua (Chenopodium quinoa Willd.) selections. Chilean Journal of Agricultural Research 69, 477–485. http://dx.doi.org/10.4067/S0718-58392009000400001
Fuentes, F.F. and Bhargava, A. 2011. Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science 197, 124–134. https://doi.org/10.1111/j.1439-037X.2010.00445.x
FAO, 1988. Salt-affected soils and their management. FAO soils bulletin 39, Rome, Italy, 131 p.
Farhoudi, R., F. Sharifzadeh, K. Poustini, M.T. Makkizadeh, M. Kochak pour. 2007. The effects of NaCl priming on salt tolerance in canola (Brassica napus L.) seedlings grown under saline conditions. Seed Science and Technology, 35: 754-759. https://doi.org/10.15258/sst.2007.35.3.23
González, J.A., Gallardo, M., Hilal, M., Rosa, M. and Prado, F.E. 2009. Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies 50, 35–42.
González, J.A., Bruno, M., Valoy, M. and Prado, F.E. 2011. Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. Journal of Agronomy and Crop Science 197, 81–93. https://doi.org/10.1111/j.1439-037X.2010.00446.x
Garciarrubio, A., Legaria, J. P., & Covarrubias, A. A. (1997). Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta, 203(2), 182–187. https://doi.org/10.1007/s004250050180. (Journal)
Garcia, M., Raes, D. and Jacobsen, S.-E. 2003. Evapotransporation analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands. Agricultural Water Management 60, 119–134. https://doi.org/10.1016/S0378-3774(02)00162-2
Gill, P.K., Sharma, A.D., Singh, P. and Bnullar, S.S. 2003. Changes in germination, growth and soluble sugar contents of sorghum bicolor Moench seeds under various abiotic stresses. Plant Growth Regulation, 40: 157-162. https://doi.org/10.1023/A:1024252222376  (Journal)
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S.E. & Shabala, S. 2011. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany, 62(1), 185-193. https://doi.org/10.1093/jxb/erq257
Hajghani, M., M. Safari and A. Maghsoudi Mud. 2008. The effect of sallinity on germination and growth seedling safflower cultivars. Journal of Sciences and Technology of Agriculture and Natural Resources of Iran, 45: 449-457.
Hordegrec, S.P. and Emmerich, W.E. 1990. Partitioning water potential and specific salt effects on seed germination of four grasses. Annuals of Botany, 66: 587-595. (Journal)
Iqbal, S., Basra, S. M., Afzal, I., Wahid, A., Saddiq, M. S., Hafeez, M. B., and Jacobsen, S. E. 2019. Yield potential and salt tolerance of quinoa on salt‐degraded soils of Pakistan. Journal of Agronomy and Crop Science 205 (1): 13-21. https://doi.org/10.1111/jac.12290
Jacobsen, S.-E., Monteros, C., Christiansen, J.L., Bravo, L.A., Corcuera, L.J. and Mujica, A. 2005. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phonological stages. European Journal of Agronomy 22, 131–139. https://doi.org/10.1016/j.eja.2004.01.003
Jacobsen, S.-E., Monteros, C., Corcuera, L.J., Bravo, L.A., Christiansen, J.L. and Mujica, A. 2007. Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy 26, 471–475. https://doi.org/10.1016/j.eja.2007.01.006
S.-E. Jacobsen, A. Mujica & C. R. Jensen 2003. The Resistance of Quinoa (Chenopodium quinoaWilld.) to Adverse Abiotic Factors, Food Reviews International, 19:1-2, 99-109, DOI: https://doi.org/10.1081/FRI-120018872
Jacobsen, S.-E., Quispe, H. and Mujica, A. 2001. Quinoa: an alternative crop for saline soils in the Andes. In: Scientists and Farmer–Partners in Research for the 21st Century. CIP Program Report 1999–2000, pp. 403–408.
Jacobsen, S.-E., F. Liu and C.R. Jensen. 2009. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 122: 281-287. https://doi.org/10.1016/j.scienta.2009.05.019
Jamali, s., Sharifan, H., Hezarjaribi, A., Sepahvand, N.A., 2016. The effect of different levels of salinity on germination and growth indices of two cultivars of Quinoa. Journal of Water and Soil Conservation. 6(1), 87-98. [In Persain].
Jamali, S., and Sharifan, H. 2018. Investigation the effect of different salinity levels on yield and yield components of Quinoa (Cv. Titicaca). Water and Soil Conservation 25 (2): 251-266. (in Persian with English abstract).
Jakab, G., J. Ton, V. Flors, L. Zimmerli, J.P. Metraux and B. Mauch-Mani. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its ABA Response. Plant Physiology, 139: 267-274. https://doi.org/10.1104%2Fpp.105.065698
Jensen, C.R., Jacobsen, S.-E., Andersen, M.N., Nunez, N., Andersen, S.D., Rasmussen, L. and Mogensen, V.O. 2000. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. European Journal of Agronomy 13, 11–25. https://doi.org/10.1016/S1161-0301(00)00055-1
Koyro, H. and Eisa, S. 2008. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil 302: 79–90.
Kaya, M.D. and S. Day. 2008. Relationship between seed size and NaCl on germination, seed vigor and early seedling growth of sunflower (Helianthus annuusL.). African Journal of Agricultural Research, 3(11): 787-791.
Kaya, C., Sonmez, O., Aydemir, S. and Dikilitas, M. 2013. Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turkish Journal of Agriculture and Forestry, 37: 188-194. https://doi.org/10.3906/tar-1205-18
Khalili, S. Bastani, A., and Bagheri, M. 2019. Effect of different levels of irrigation water salinity and phosphorus on some properties of soil and Quinoa plant. Iranian Journal of Soil Research 33 (1): 155-167. https://dx.doi.org/10.22092/ijsr.2019.119757
Meeking. J.F., Egan, T.P., Irwin. A. and Ungar A. 1997. The Effect of different Salts of Sodium and Potassium. Nutrition, 20(123): 1723 – 1730. https://doi.org/10.1080/01904169809365554 (Journal)
Meloni, D.A., M.A. Oliva, C.A. Martinez and J. Cambraia. 2003. Photosynthesis and activity of superoxide dismutase, POD and gluta thione reductase in cotton under salt stress. Brazilian Journal of Plant Physiology, 15(2): 12-21. https://doi.org/10.1016/S0098-8472(02)00058-8
Mahmoud, A. H., Atteya, M. G., El-Damarawy, Y. A., and Saleh, M. E. 2019. Effects of water salinity and nitrogen fertilization on the production of quinoa grown in clay and sandy soils. The Middle East Journal 8 (2) 746-754.
Manaa, A., Goussi, R., Derbali, W., Cantamessa, S., Abdelly, C., and Barbato, R. 2019. Salinity tolerance of quinoa (Chenopodium quinoa Willd) as assessed by chloroplast ultrastructure and photosynthetic performance. Environmental and Experimental Botany 162: 103-114. https://doi.org/10.1016/j.envexpbot.2019.02.012
Maleki, P., Saadat, S., Bahrami, H. A., Rezaei, H., and Esmaeelnejad, L. 2019. Accumulation of ions in shoot and seed of quinoa (Chenopodium quinoa Willd.) under salinity stress. Communications in Soil Science and Plant Analysis 50 (6): 782-793. https://doi.org/10.1080/00103624.2019.1589486
Maleki, P., Bahrami, H. A., Saadat, S., Sharifi, F., Dehghany, F., and Salehi, M. 2018. Salinity threshold value of Quinoa (Chenopodium quinoa Willd.) at various growth stages and the appropriate irrigation method by saline water. Communications in Soil Science and Plant Analysis 49 (15): 1815-1825. https://doi.org/10.1080/00103624.2018.1474917
Mamedi A., Tavakkol Afshari R., Sepahvand, N.A., 2015. Quantifying seed germination response of quinoa (Chenopodium quinoa Willd.) under temperature and drought stress regimes. Iranian Journal of Field Crop Science. 48(3), 615-623. [In Persain]. https://dx.doi.org/10.22059/ijfcs.2017.128439.653907
Mane, A. V., Deshpande, T. V., Wagh, V. B., Karadge, B. A. and Samant, J. S. 2011. A critical review on physiological changes associated with reference to salinity. International Journal of Environmental Science, 1 (6): 1192-1216.
Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.  https://doi.org/10.1146/annurev.arplant.59.032607.092911
Niu, X., Bressan, R.A., Hasegawa, P.M. and Pardo, J. M. 1995. Ion homeostasis in NaCl stress environment. Plant Physiology, 109: 735- 742. https://doi.org/10.1104%2Fpp.109.3.735 (Journal)
Neto, A.D.A., J.T. Prisco, J. Eneas-Filho, C.E.B. Abreu and E. Gomes-Filho. 2006. Effect of salt stress on antioxidant enzymes and lipid per oxidation in leaves and roots of salt-tolerance and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56: 87-94. https://doi.org/10.1016/j.envexpbot.2005.01.008
Orhan, E., A. Esitken, S. Ercisli, M. Turan and F. Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Horti. 111: 38-43. https://doi.org/10.1016/j.scienta.2006.09.002
Parvaiz, M. 2013. Response of maize to salt stress a critical review. International Journal of Healthcare Science, 1: 13-25.
Prado, F.E., Boero, C., Gallardo, M. and Gonzalez, J.A. 2000. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa (Willd.) seeds. Botanical Bulletin of Academia Sinica 41, 27–34. 192.
Prego, I., Maldonado, S. and Otegui, M. 1998. Seed structure and localization of reserves in Chenopodium quinoa. Annals of Botany 82, 481–488.
Riaz, F., Abbas, G., Saqib, M., Amjad, M., Farooq, A., Ahmad, S., Naeem, M. A., Umer, M., Khalid, M. S., Ahmad, Kh., and Ahmad, N. 2020. Comparative effect of salinity on growth, ionic and physiological attributes of two quinoa genotypes. Pakistan Journal of Agricultural Sciences 57 (1): 115-122.
Rosa, M., Hilal, M., González, J.A. and Prado, F.E. 2009. Low temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiology and Biochemistry 47, 300–307. https://doi.org/10.1016/j.plaphy.2008.12.001
Ruffino, A.M.C., Rosa, M., Hilal, M., González, J.A. and Prado, F.E. 2010. The role of cotyle-don metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant and Soil 326, 213–224. https://doi.org/10.1007/s11104-009-9999-8
Sharma, A.D., Thakur, M., Rana, M. and Singh, K. 2004. Effect of plant growth hormones and abiotic stresses on germination, growth and phosphates activities in sorghum bicolor L. Moench seeds.  African Journal of Biotechnology, 3: 308-312. https://doi.org/10.5897/AJB2004.000-2057 (Journal)
Safarnejad, A. and Hamidi, H. 2006. Effects of salinity on seed germination and seedling growth of some medicinal plants. National conference of sustainable development of medicinal plants. (In Persian) (Conference).
Shalhevet, J. 1993. Plant under salt and water stress. In: plant adaptation to environmental stress, Chaoman and Hall. 133- 154. (Part of Book)
Seyedsharifi, R.  2008.  Evaluation the effect of PEG on germination and growth seedling carthamus cultivars. Biology Journal of Iran, 3: 400-410.
Sairam, R.K., G.C. Srivastava, S. Agarwal and R.C. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biological Plantarum, 49: 85-91. https://doi.org/10.1007/s10535-005-5091-2
Sinha, A. K. 1972. “Colorimetric assay of catalase”. Analytical Biochemistry 47(2): 389-394.
Valentovic, P., M. Luxova, L. Kolarovi and O. Gasparikora. 2006. Effect of osmotic stress on compatible solutes content, memberane stability and water relation in two maize. Plant Soil Environment. 52 (4):186-191.
Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizer. Plant Soil. 255(2): 571-586. https://doi.org/10.1023/A:1026037216893
Vacher, J.J. 1998. Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd.) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: significance of local adaptation. Agriculture Ecosystems and Environment 68, 99–108.
Wilson, C., Read, J.J. and Abo-Kassem, E. 2002. Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition 25, 2689–2704. https://doi.org/10.1081/PLN-120015532
Yapsania, T., Moustakas, M. and Domiandou, K. 1994. Protein Phasporylation dephosphorylution in alfalfa seeds germinating under salt stress. Journal of plant physiology, 143: 234-240. (Journal)