اثر تیمار بذر با سالیسیلیک اسید، هیومیک اسید و روی بر عملکرد گندم دوروم در شرایط دیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد-آگروتکنولوژی- فیزیولوژی گیاهان زراعی، گروه مهندسی تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه ، ایران.

2 گروه مهندسی تولید و ژنتیک گیاهی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه ، ایران.

چکیده

مقدمه: امروزه تیمار بذر با استفاده از تنظیم‌کننده‌های رشد و یا مواد مغذی به‌دلیل تأثیر قابل توجه بر رشد، عملکرد و همچنین ایجاد مقاومت به بیماری‌ها و آفات کاربرد زیادی پیدا کرده است. براین اساس، در تحقیق حاضر، اثر تیمار بذر با سالیسیلیک اسید، هیومیک اسید و روی بر دو رقم گندم دوروم در شرایط دیم مورد بررسی قرار گرفت.
 
مواد و روش‌ها: این پژوهش به­صورت فاکتوریل بر پایه­ طرح بلوک‌های کامل تصادفی با سه تکرار در مزرعه پژوهشی پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، در سال زراعی 99-1398 اجرا شد. عوامل آزمایش شامل دو رقم گندم دوروم (ساجی و ذهاب) و تیمارهای بذر (سالیسیلیک اسید، هیومیک اسید، روی، سالیسیلیک اسید + هیومیک اسید، سالیسیلیک اسید + روی، هیومیک اسید + روی، سالیسیلیک اسید + هیومیک اسید + روی و شاهد) بودند. تیمارهای بذر قبل از کاشت به صورت بذرمال با غلظت یک میلی‌مولار سالیسیلیک اسید، روی (دو درصد) و پودر هیومیک اسید (95 درصد) به‌ترتیب به نسبت یک کیلوگرم یا لیتر به 100، 100 و 300 کیلوگرم بذر اعمال شدند. صفات مورد بررسی شامل محتوی رنگدانه‌های فتوسنتزی، سطح برگ پرچم در مرحله آبستنی (کد 45 مقیاس زادکس)، عملکرد و اجزای عملکرد و درصد پروتئین دانه در زمان رسیدگی بودند.
 
یافته‌ها: بر اساس نتایج تجزیه واریانس، اثر رقم، تیمارهای بذر و اثرات متقابل بین آنها بر صفات مورد بررسی به جز تعداد سنبله در واحد سطح معنی‌دار بود. عملکرد دانه در گندم دوروم رقم ذهاب به‌طور معنی‌داری بالاتر از رقم ساجی بود. عملکرد دانه دو رقم در تمام تیمارهای بذری نسبت به تیمار شاهد بیشتر بود. در رقم ذهاب عملکرد دانه در تیمارهای بذری تقریباً یکسان بود، ولی در رقم ساجی بیشترین عملکرد دانه در تیمار بذری با مصرف روی (5033 کیلوگرم در هکتار) به‌دست آمد و سایر تیمارهای بذری اثرات یکسانی داشتند. بین دو رقم اختلاف معنی‌داری از نظر درصد پروتئین دانه دیده نشد، ولی بیشترین و کمترین مقدار پروتئین دانه در تیمارهای بذری سالیسیلیک اسید + هیومیک اسید و شاهد به‌ترتیب با 14/13 و 11/12 درصد مشاهده شد. در زمان آبستنی، اثرات رقم و تیمار بذر بر سطح برگ پرچم و محتوی رنگدانه‌های فتوسنتزی (به جز کاروتنوئیدها) معنی‌دار بودند. رقم ذهاب بر رقم ساجی از نظر صفات سطح برگ پرچم و محتوی رنگدانه‌های فتوسنتزی برتری داشت.
 
نتیجه‌گیری: طبق نتایج این پژوهش، گندم دوروم رقم ذهاب دارای عملکرد بالاتری نسبت به رقم ساجی بود. اثر تیمارهای بذر با سالیسیلیک اسید، هیومیک اسید، روی و ترکیب این تیمارها، نسبت به شاهد اثرات مثبت و معنی‌داری بر عملکرد دانه داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of seed treatment with salicylic acid, humic acid and zinc on the yield of durum wheat under rainfed conditions

نویسندگان [English]

  • Masoud Mohebbi 1
  • Mohammad Eghbal Ghobadi 2
  • Hamid Reza Chaghazardi 2
1 M.Sc. in Agrotechnology - Crop Physiology, Department of Plant Production and Genetics, Agriculture and Natural Resources Campus, Razi University, Kermanshah, Iran.
2 Department of Plant Production and Genetics, Agriculture and Natural Resources Campus, Razi University, Kermanshah, Iran.
چکیده [English]

Introduction: Nowadays, seed treatment with growth regulators or nutrients is widely used in the seed industry due to its significant effect on growth and yield, as well as resistance to diseases and pests. Therefore, in the present research, the effects of seed treatments with salicylic acid, humic acid, and zinc on two durum wheat cultivars were investigated under rainfed conditions.
Materials and methods: This research was conducted as a factorial experiment based on a randomized complete blocks design (RCBD) with three replications in the research farm of the Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran, in 2019-2020. Factors included two cultivars of durum wheat (Saji and Zahab) and seed treatments (salicylic acid, humic acid, zinc, salicylic acid + humic acid, salicylic acid + zinc, humic acid + zinc, salicylic acid + humic acid + zinc, and control). Seed treatments were applied before sowing with a concentration of one millimolar (mM) salicylic acid solution, zinc solution (2%), and humic acid powder (95%) at the ratio of one kg or lit to 100, 100, and 300 kg of seeds, respectively. The investigated traits included the content of photosynthetic pigments and flag leaf area in the boot stage (code 45 on the Zadoks growth scale) and yield and yield components and seed protein percentage at the ripening stage.
Results: The results of the analysis of variance showed that the effect of cultivars, seed treatments, and interactions between them was significant on the studied traits (except the number of spikes per square meter). The grain yield in durum wheat cv. Zahab was significantly higher than Saji. The grain yield of two cultivars in all seed treatments was higher than the control. Grain yield in Zahab was almost the same in all of the seed treatments, but in Saji, the highest grain yield was obtained in seed treatment with zinc usage (5033 kg. ha-1), and other seed treatments had the same effects. There was no significant difference between the two cultivars in terms of seed protein percentage, but the highest and lowest amount of seed protein was observed in salicylic acid + humic acid and control seed treatments with 13.14 and 12.11%, respectively. At the boot stage, the effects of cultivar and seed treatment on flag leaf area and the content of photosynthetic pigments (except carotenoids) were significant. Zahab cv. was superior to Saji in terms of flag leaf area and photosynthetic pigment content.
Conclusion: Based on the results of this research, durum wheat cv. Zahab had a better performance than Saji. The effect of seed treatments with salicylic acid, humic acid, zinc, and the combination of these treatments had positive and significant effects on the grain yield compared to the control.

کلیدواژه‌ها [English]

  • Seed protein
  • Zahab
  • Photosynthetic pigments
  • Saji
Abasi, H., & Hamzei, J. 2017. The effect of different sources of pre-plant nitrogen-fertilizers and humic acid on yield and some physiological traits of wheat Pishtaz cultivar. Crop Physiology Journal, 9(35), 73-88 [In Persian].
Abdoli, M., & Esfandiari, E. 2014. Effect of zinc foliar application on the quantitative and qualitative yield and seedlings growth characteristics of bread wheat (cv. Kohdasht). Iranian Journal of Dryland Agriculture, 3(1), 77-90. https://dx.doi.org/10.22092/idaj.2014.100557 [In Persian]
Al-Mahdi, I. O., EL-Tabbakh, S. S., Nawar, A. I., & Abd-Elmoneim, M. H. 2021. Yield and Yield Components of Durum Wheat as Influenced by Humic Acid, Zinc and Iron Application. Alexandria Science Exchange Journal, 42, 107-120. https://dx.doi.org/10.21608/asejaiqjsae.2021.152591
AOAC. 1990. Association of official analytical chemists. 15th Ed, Method No: 988.05, P:70.
Arnon, D.I. 1949. Copper enzyme in isolated chloroplast and polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1
Asal, M. W., Elham, A., Ibrahim, O. M., & Ghalab, E. G. 2015. Can humic acid replace part of the applied mineral fertilizers? A study on two wheat cultivars grown under calcareous soil conditions. International Journal of ChemTech Research, 8(9), 20-26.
Cakmak, I., Pfeiffer, W. H., & Mc Clafferty, B. 2010. Review: Bio fortification of durum wheat with zinc and iron. Cereal Chemistry, 87(1), 10-20. https://doi.org/10.1094/cchem-87-1-0010
Chanda, S., & Singh, Y. 2002. Estimation of leaf area in wheat using linear measurements. Plant Breeding and Seed Science, 46, 75-79.
De Melo, B. A. G., Motta, F. L., & Santana, M. H. A. 2016. Humic acids: structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: C, 62, 967-974. https://doi.org/10.1016/j.msec.2015.12.001
Delfine, S., Tognetti, R., Desiderio, E., & Alvino, A. 2005. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development, 25, 183-191. https://doi.org/10.1051/agro:2005017
Doroodian, M., Sharghi, Y., Alipour, A., & Zahedi, H. 2016. Yield and yield components of wheat as influenced by sowing date and humic acid. International Journal of Natural Sciences, 5(1), 8-14. https://doi.org/10.3329/ijns.v5i1.28605
Giasuddin, A. B., Kanel, S. R., & Choi, H. 2007. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental science and technology, 41(6), 2022-2027. https://doi.org/10.1021/es0616534
Guo, B., Liang, Y., & Zhu, Y. 2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166, 20-31. https://doi.org/10.1016/j.jplph.2008.01.002
Guzman, C., Autrique, J. E., Mondal, S., Singh, R. P., Govindan, V., Morales-Dorantes, A., Romano, G. P., Crossa, J., Ammar, K., & Pena, R.J. 2016. Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Research, 186, 157–165. https://doi.org/10.1016/j.fcr.2015.12.002
Haghparast, M., & Maleki Farahani, S. 2013. Effect of water deficit irrigation and natural products on vegetative characteristics of different chickpea (Cicer arietinum) varieties. Iranian Journal of Pulses Research, 4(2), 77-86. [In Persian]
Hashemi, S., Emam, Y., & Pirasteh Anosheh, H. 2015. The effect of time and type of salicylic acid application on growth trend, yield and yield components of barley (Hordeum vulgare L.) under salinity tension conditions. Crop Physiology Journal, 6(24), 5-18. [In Persian]
Kadam, P. M., Damyanti Prajapati, D., Kumaraswamy, R. V., Kumari, S., Devi, K. A., Pal, A., Harish, Sharma, S. K., & Saharan, V. 2021. Physio-biochemical responses of wheat plant towards salicylic acid-chitosan nanoparticles. Plant Physiology and Biochemistry, 162, 699-705. https://doi.org/10.1016/j.plaphy.2021.03.021
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 1-17. https://doi.org/10.3389/fpls.2015.00462
Khodary, S. E. A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. International Journal of Agriculture and Biology, 6(1), 5-8.
Martínez-Moreno, F., Ammar, K., & Solís, I. 2022. Global changes in cultivated area and breeding activities of durum wheat from 1800 to date: A historical review. Agronomy, 12(1135), 1-17. https://doi.org/10.3390/agronomy12051135
Mefleh, M., Conte, P., Fadda, C., Giunta, F., Piga, A., Hassoun, G., & Motzo, R., 2019. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. Journal of the Science of Food and Agriculture, 99, 2059-2067. https://doi.org/10.1002/jsfa.9388
Mohammadi, R., Abdolahi, A., Mohammadi, M. S., Elahi, K., & Yari, S. R. 2016. Evaluation of yield gap of durum wheat genotypes under research and farmers' fields conditions. Research Achievements for Field and Horticulture Crops, 5(2), 133-141.  https://doi.org/10.22092/rafhc.2016.109760
Mohammadi, R., Aghaee Sarbarze, M., Haghparast, R., Armion, M., SadeghzadehAhari, D., & Roustaii, M. 2010. Saji, a new Durum wheat cultivar adapted to rainfed and supplementary irrigation conditions of moderate cold and moderate warm areas of Iran. Seed and Plant Journal, 26 (4), 561-565. [In Persian]
Rahmati, M., ‏ Hosseinpour, T., & Ahmadi, A. 2020. Assessment of interrelationship between agronomic traits of wheat genotypes under rain-fed conditions using double and triple biplots of genotype, trait and yield. Dryland Agriculture, 9(1), 1-20. [In Persian]
Rakhmankulova, Z. F., Fedyaev, V. V., Rakhmatulina, S. R., Ivanov, C. P., Gilvanova, I. R., & Yu Usmanov., I. 2010. The effect of wheat seed pre-sowing treatment with salicylic acid on its endogenous content, activities of respiratory pathways, and plant antioxidant status. Russian Journal of Plant Physiology, 57(6), 778–783. http://doi:10.1134/S1021443710060051
Sabzevari, S., & Khazaie, H. 2009. The Effect of foliar application with humic acid on growth, yield and yield components of wheat (Triticum aestivum L.). Journal of Agroecology, 1(2), 53-63. http://doi:10.22067/jag.vli2.2686 [In Persian]
Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. 2015. Plant physiology and development. 6th Edition, Sinauer Associates, Sunderland, CT. p: 761.
Tavares, L. C., Rufino, C. A., Oliveira, S. D., Brunes, A. P., & Villela, F. A. 2014. Treatment of rice seeds with salicylic acid: seed physiological quality and yield. Journal of Seed Science, 36, 352-356. https://doi.org/10.1590/2317-1545v36n3636
Toor, M. D., Adnan, M., Javed, M., Habibah, U., Arshad, A., Din, M., & Ahmad, R. 2020. Foliar application of Zn: Best way to mitigate drought stress in plants; A review. International Journal of Applied Research, 6(8), 16-20.
Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., & Liu, Y. 2020. The critical role of zinc in plants facing the drought stress. Agriculture, 10, 396. https://doi.org/10.3390/agriculture10090396
Vahabi, N., Emam, Y., & Pirasteh-Anosheh, H. 2017. Improving wheat growth and yield using chlormequat chloride, salicylic acid and jasmonic acid under water stress. Iranian Journal of Field Crop Research, 15(1), 124-135. https://doi.org/10.22067/gsc.v15i1.47584 [In Persian]
Yu, S. M., Lo, S. F., & Ho, T. H. D. 2015. Source–sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20, 844-857. https://doi.org/10.1016/j.tplants.2015.10.009
Yuan, T., Ji, J., Wang, J., Sun, X., Yan, J., Wang, Z., & Niu, J. 2017. Effect of combined application of humic acid and nitrogen fertilizer on nitrogen uptake, utilization and yield of winter wheat. Chinese Journal of Eco-Agriculture, 25(3), 365-372.