تأثیر محلول پاشی روی و پرولین بر عملکرد و محتوای روی و فسفر دانه در گندم ‏دوروم ‏رقم ساجی تحت شرایط تنش خشکی ‏

نوع مقاله : مقاله پژوهشی

نویسنده

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی دانشگاه ایلام، ایلام، ایران

چکیده

مقدمه: رخداد تنش خشکی و حرارتی در طول دوره رشد و به ویژه در مرحله پرشدن دانه جزو مهمترین عامل‎های محدود کننده محیطی رشد و تولید گندم به خصوص در مناطق خشک و نیمه خشک جهان محسوب می‌گردد. علاوه بر این، جمعیت جهانی و مخصوصاً آن بخشی که ساکن کشورهای در حال توسعه هستند و غلات جزو رژیم غذایی اصلی آن‎ها محسوب می‌شود، در معرض بیماری‎های مختلف ناشی از کمبود روی قرار دارند و اگر محصولات تولیدی غلات این کشورها ماحصل اراضی زراعی با خاک‎های فقیر از روی باشد، این مسئله حادتر است. مطالعات انجام گرفته نشان داده که مصرف روی نه تنها موجب افزایش محتوای روی و عملکرد دانه در گندم گردیده، بلکه تحمل تنش خشکی را نیز بهبود بخشیده است. پژوهش حاضر به جهت فهم بهتر و کسب اطلاعات بیشتر در خصوص نقش عنصر روی در گیاه گندم طراحی گردید.
مواد و روش‌ها: پژوهش حاضر در قالب دو آزمایش انجام شد. آزمایش اول با هدف بررسی مقدماتی تأثیر کاربرد روی به روش پرایم بذر و محلول­پاشی برگی بر ویژگی­های بیوشیمیایی و مولکولی مرتبط با تحمل خشکی در گندم و تحت شرایط اتاقک رشد انجام شد و در آزمایش دوم تأثیر محلول­پاشی روی در غلظت­های مختلف (صفر، 1/0، 2/0 و 3/0 درصد وزن حجمی) در تلفیق با  پرولین (عدم کاربرد و کاربرد 15 میکرومولار) تحت شرایط مزرعه مورد ارزیابی قرار گرفت. چهار روز پس از اعمال تنش، میزان تغییرات در بیان ژن مرتبط با سنتز آنزیم پرولین [Δ1-pyrroline-5-‎carboxylate reductase (P5CS)]، محتوای پرولین و نیز میزان مالون دی آلدهید مورد بررسی قرار گرفت. آزمایش مزرعه‎ای در بخش سیروان استان ایلام و در مزرعه گندم انجام گرفت. محلول پاشی‎ها در مرحله گرده‎افشانی (گلدهی) انجام و سپس گیاهان با قطع آبیاری به مدت 21 روز تحت تنش خشکی قرار گرفتند. در هر دو آزمایش از رقم ساجی استفاده گردید.
یافته‌ها: در مقایسه با گیاهان شاهد، کاربرد روی به ویژه از طریق محلول پاشی برگی آن، موجب افزایش میزان بیان ژن P5CS، افزایش محتوای پرولین و کاهش میزان مالون دی آلدهید در برگ گردید. نتایج مزرعه‌ای نشان‎دهنده تأثیر معنی‌دار محلول‎پاشی روی بر افزایش محتوای روی دانه بود. تلفیق روی با پرولین و نیز کاربرد به تنهایی پرولین تأثیری معنی‎دار بر محتوای روی دانه نداشت. اثر روی بر میزان عملکرد دانه معنی‌دار گردید. تیمار با غلظت‎های مختلف 1/0، 2/0 و 3/0 درصد (نسبت وزنی به حجمی) سولفات روی به ترتیب عملکرد دانه را به‎ترتیب به میزان 7/1، 24/7، و 62/3 درصد در مقایسه با تیمار شاهد بهبود بخشید. نتایج بیشتر این بررسی نشان داد که کاربرد توأمان پرولین و روی در غلظت 2/0 درصد بر افزایش عملکرد دانه موثرتر از سایر تیمارها بود. محلول‎پاشی با روی میزان محتوای فسفر دانه را به صورت معنی‌داری تغییر داد به گونه‌ای که غلظت‎های 1/0، 2/0 و 3/0 درصد سولفات روی به ترتیب فسفر دانه را به میزان 3/8، 7/14 و 1/18 درصد در مقایسه با گیاهان شاهد کاهش داد. تأثیر محلول‌پاشی با روی بر محتوای روی دانه نیز معنی‌دار گردید. محلول‎پاشی با غلظت‏های مختلف روی (1/0، 2/0 و 3/0 درصد) محتوای روی دانه را بین  3/6 تا 1/19 درصد افزایش داد.
نتیجه‌گیری: با لحاظ نمودن جنبه‌های اقتصادی و نیز در نظر داشتن افزایش محتوای روی و عملکرد دانه، استفاده از غلظت 3/0 درصد روی به صورت محلول‌پاشی در مرحله گرده‎افشانی ضمن افزایش محتوای روی دانه، می‌تواند موجب حصول عملکرد بالاتری در گندم گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect ‎ of foliar application of Zinc and exogenous application of proline on yield ‎and grain Zn and P content in a wheat durum cultivar Saji under drought stress ‎condition

نویسنده [English]

  • Mohammad Javad Zarae
Department of Agronomy and Crop Breeding, Ilam University, Ilam, Iran
چکیده [English]

Introduction: Heat and dry stress events during the wheat-growing season, particularly during wheat grain filling, are among the prevalent environmental constraints that adversely affect wheat growth and productivity worldwide. Because people in developing countries are highly dependent on cereal-based diets, they are prone to Zn-related diseases. The situation becomes worse when the crop is grown in soil with low Zn content. Studies have shown that the application of Zinc (Zn) successfully increased wheat grain yield and grain Zn content and improved wheat tolerance to drought. The present studies are designed to provide a better understanding and further information on the response of wheat to Zn application under drought conditions.
Materials and methods: The present study included two experiments: a preliminary experiment that aimed to elucidate the effect of the application of Zn via foliar or seed priming on wheat tolerance to drought stress and a field study that was designed to investigate the effect of exogenous proline and foliar application of Z on wheat yield and grain nutrient. A preliminary experiment detected the effects of the Zn application method on the biochemical and molecular characteristics of drought-stressed wheat. Proline-biosynthesis-related gene [Δ1-pyrroline-5-‎carboxylate reductase (P5CS)] expression, proline accumulation, and malondialdehyde content were determined four days after drought stress was imposed. A subsequent field experiment (Experiment 2) was also conducted to elucidate the effect of foliar application of Zn [0, 0.1, 0.2 and 0.3% (w/v)] individually and in all possible combinations with proline (0 and 15 µ mole) on wheat performance under post-anthesis drought stress condition. The foliar application was applied at anthesis. All plants were exposed to drought stress by withholding irrigation for 21 days. The field experiment was conducted in 2021/22 during the wheat-growing season at a commercial wheat-grown farm. The experiment site is located in Sirvan County, Ilam Province. A durum wheat cultivar, ‘Saji’, was used in both experiments.
Results: Zn application, mainly when applied via foliar, increased P5CS mRNA accumulation and proline content and decreased malondialdehyde content in the leaf compared to the control treatment. Results of the field experiment showed that the combined application of Zn and proline successfully biofortified field wheat with Zn and could ameliorate the adverse effect of post-anthesis drought stress. Under field conditions and compared with the control plant, treated plants with 0.1%, 0.2%, and 0.3% ‎(w/v‎)‎ of ZnSO4.7H2O solution significantly increased grain yield by 1.7%, 7.24%, and 3.62%, respectively. Compared with the control treatment, exogenously applied proline increased grain yield by up to 4.4%. Results showed that the foliar application of Zn at 0.2% (w/v) in combination with proline (15 mM) had a more significant effect on increased grain yield. Foliar-applied Zn at 0.1%, 0.2% and 0.3% ‎(w/v‎)‎ of ZnSO4 solution decreased grain P content by 8.3%, 14.7% and 18.1%, respectively, as compared with the control. Foliar Zn application of 0.1%, 0.2%, and 0.3% ‎(w/v‎)‎ of ZnSO4.7H2O solution increased Zn content in grain by 6.3%, 11.9%, and 19.1%, respectively, to control plants.
Conclusion: Regarding the cost for farmers, foliar application of Zn at a concentration of 0.3% at the anthesis stage can be suggested as the best treatment to improve both the quantity and quality of wheat.

کلیدواژه‌ها [English]

  • Gene expression
  • malondialdehyde
  • Plant stress
  • Zn application‎
Andrejic, G., Gajic, G., Prica, M., Dželetović, Ž., & Rakić, T. 2018. Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus × giganteus plants. Photosynthetica, 56, 1249-1258. https://doi.org/10.1007/s11099-018-0827-3.
Anwar, M. Y., Kayani, Z. N., & Hassan, A. 2021. An insight of physical and antibacterial properties of Au-doped ZnO dip coated thin films. Optical Materials, 118, 111276. https://doi.org/10.1016/j.optmat.2021.111276
Bates, L. S., Waldran, R. P., & Teare, I. D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. https://doi.org/10.1007/BF00018060.
Cakmak, I, 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?. Plant and Soil, 302, 1-17. https://doi.org/10.1007/s11104-007-9466-3.
Cakmak, I., Kalayc, M., Ekiz, H., Braun, H., Kılınç, Y., & Yılmaz, A. 1999. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crops Research, 60, 175–188. https://doi.org/10.1016/S0378-4290(98)00139-7.
Choukri, M., Abouabdillah, A., Bouabid, R., Abd-Elkader, O. H., Pacioglu, O., Boufahja, F., & Bourioug, M. 2022. Zn application through seed priming improves productivity and grain nutritional quality of silage corn. Saudi Journal of Biological Sciences, 29(12), 103456.https://doi.org/10.1016/j.sjbs.2022.103456.
Desta, M. K., Broadley, M. R., McGrath, S. P., Hernandez-Allica, J., Hassall, K. L., Gameda, S., Amedem T., & Haefele, S. M. 2023. Linking oil adsorption-desorption characteristics with grain zinc concentrations and uptake by teff, wheat and maize in different landscape positions in Ethiopia. Frontire in Agronomy, 5, 1285880. https://doi.org/10.3389/fagro.2023.1285880
Dhaliwal, S. S., Sharma, V., Shukla, A. K., Verma, V., Behera, S. K., Singh, P., & Singh, H. 2022. Foliar zinc application for zinc biofortification in diverse wheat genotypes under low Zn soil. Cereal Research Communications, 50, 1269-1277. https://doi.org/10.1007/s42976-022-00251-8.
Doolette, C., Read, T., Howell, N., Cresswell, T., & Lombi, E. 2020. Zinc from foliar-applied nanoparticle fertilizer is translocated to wheat grain: a 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilizers. Science of the Total Environment, 749, 142369. https://doi.org/10.1016/j.scitotenv.2020.142369.
Harris, D., Rashid, A., Miraj, G., Arif, M., & Yunas, M. 2008. ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant and Soil, 306, 3-10. https://doi.org/10.1007/s11104-007-9506-z.
Haslett, B. S., Reid, R. J., & Rengel, Z. 2001. Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Annals of Botany, 87, 379-386. https://doi.org/10.1006/anbo.2000.1349.
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., Garnczarska, M. 2022. Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review. International Journal of Molecular Sciences, 23, 5186. https://doi.org/10.3390/ijms23095186.
Ivanović, D., Dodig, D., Đurić, N., Kandić, V., Tamindžić, G., Nikolić, N., & Savić, J. 2021. Zinc biofortification of bread winter wheat grain by single zinc foliar application. Cereal Research Communications, 49, 673-679. https://doi.org/10.1007/s42976-021-00144-2
Jones, J. N. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC Press.
Kamran, A., Ghazanfar, M., Khan, J. S., Pervaiz, S., Siddiqui, M. H., & Alamri, S. A. 2023. "Zinc absorption through leaves and subsequent translocation to the grains of bread wheat after foliar spray. Agriculture, 9, 1775. https://doi.org/10.3390/agriculture13091775.
Li, G., Li, C., Rengel, Z., Liu, H., & Zhao, P. 2020. Excess Zn-induced changes in physiological parameters and ‎expression levels of TaZips in two wheat genotypes. Environmental and Experimental Botany, 177, 104133. ‎ https://doi.org/10.1016/j.envexpbot.2020.104133.
Livak, K. J., & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods. 25, 402-8. https://doi.org/10.1006/meth.2001.1262.2
Luo, H., Du, B., He, L., He, J., Hu, L., Pan, S., & Tang, X. 2019. Exogenous application of zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2-AP) biosynthesis in different fragrant rice genotypes. Scientific Report, 9, 19513. https://doi.org/10.1038/s41598-019-56159-7.
Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M., & Arvin, M. J. 2018. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 13, 461-471. https://doi.org/10.1080/17429145.2018.1506516.
Mohammadi, R., Aghaee Sarbarze, M., Haghparast, R., Armion,M., SadeghzadehAhari, D., & Roustaii, M. 2010. Saji, A New Durum Wheat Cultivar Adapted to Rainfed and Supplementary Irrigation Conditions of Moderate Cold and Moderate Warm Areas of Iran. Seed and Plant Journal, 26, 561-565. https://doi.org/10.22092/spij.2017.111043.
Nguyen, T. D., Cavagnaro, T. R. & Watts-Williams, S. J. 2019. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Science Report, 9, 14880. https://doi.org/10.1038/s41598-019-51369-5.
Ozturk, L., Yazici, M. A., Yucel, C., Torun, A. A., Çekiç, C., Bağci, A., Özkan, H., Braun, H., Sayers, Z., & Cakmak, I. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum, 128, 144-152. https://doi.org/10.1111/j.1399-3054.2006.00737.x.
Pavia, I., Roque, J., Rocha, L., Ferreira, H., Castro, C., Carvalho, A., Silva, E., Brito, C., Gonçalves, A., Lima-Brito, J., & Correia, C. 2019. Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. Plant Physiology and Biochemistry, 140, 27-42. https://doi.org/10.1016/j.plaphy.2019.04.028.
Pearson, J. N, Rengel, Z., Jenner, C. F., & Graham, R. D.1996. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears. Physiologia Plantarum, 98, 229-234. https://doi.org/10.1034/j.1399-3054.1996.980202.x.
Pearson, J. N., & Rengel, Z. 1995. Uptake and distribution of 65Zn and 54Mn in wheat grown at sufficient and deficient levels of Zn and Mn II. during grains development. Journal of Experimental Botany, 46, 841-845. https://doi.org/10.1093/jxb/46.7.841.
Pearson, J. N., Rengel, Z., Jenner, C. F., & Graham, R. D. 1995 Transport of zinc and manganese to developing wheat grains. Physiologia Plantarum, 95, 449-455. https://doi.org/10.1111/j.1399-3054.1995.tb00862.x.
Poblaciones, M. J., & Rengel, Z. 2017. Combined foliar selenium and zinc biofortification in field pea (Pisum sativum): accumulation and bioavailability in raw and cooked grains. Crop and Pasture Science, 68, 265-271. https://doi.org/10.1071/CP17082.
Praharaj, S., Skalicky, M., Maitra, S., Bhadra, P., Shankar, T., Brestic, M., Hejnak, V., Vachova, P., & Hossain, A. 2021. Zinc Biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules. 26, 3509. https://doi.org/ 10.3390/molecules26123509.
Read, T. L., Doolette, C. L., Li, C., Schjoerring, J. K., Kopittke, P. M., Donner, E., & Lombi, E. 2020. Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption? Physiologia Plantarum, 170, 384-397. https://doi.org/10.1111/ppl.13167.
Saha, B. N., Saha, S., Saha, S., Deb Roy, P., Bhowmik, A., & Hazra, G. C. 2020. Zinc (Zn) application methods influences Zn and iron (Fe) bioavailability in brown rice. Cereal Research Communications, 48, 293-299. https://doi.org/10.1007/s42976-020-00038-9.
Sattar, A., Wang, X., Ul-Allah, S., Sher, A., Ijaz, M., Irfan, M., Abbas, T., Hussain, S., Nawaz, F., Al-Hashimi, A., Al Munqedhi, B. M., & Skalicky, M. 2022. Foliar application of zinc improves morpho-physiological and antioxidant defense mechanisms, and agronomic grain biofortification of wheat (Triticum aestivum L.) under water stress. Saudi Journal of Biological Sciences, 29, 1699-1706. https://doi.org/10.1016/j.sjbs.2021.10.061.
Shemi, R., Wang, R., Gheith, E. S. M. S., Hussain, H. A., Cholidah, L., Zhang, K., Zhang, S, & Wang, L. 2021. Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages. BMC Plant Biology, 21, 1-15. https://doi.org/10.1186/s12870-021-03367-x
Stewart, R. R. C., & Bewley, J. D. 1980. Lipid peroxidation associated aging of soybean axes. Plant Physiology, 65, 245-248. https://doi.org/10.1104/pp.65.2.245.
Wang, S., Li, M., Liu, K., Tian, X., Li, S., Chen, Y., & Jia, Z. 2017. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality. PloS One, 12, e0181276. https://doi.org/10.1371/journal.pone.0181276
Wessells, K. R., & Brown, K. H. 2012. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One, 7, e50568. https://doi.org/10.1371/journal.pone.0050568
Xia, H., Xue, Y., Liu, D., Kong, W., Xue, Y., Tang, Y., Li, J., Li, D., & Mei, P. 2018. Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Frontiers in Plant Science, 9, 677. https://doi.org/10.3389/fpls.2018.00677
Yang, D., Ni, R., Yang, S., Pu, Y., Qian, M., Yang, Y., & Yang, Y. 2021. Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions. International Journal of Molecular Sciences, 22, 9599. https://doi: 10.3390/ijms22179599.
Zarea, M. J., & Karimi, N. 2023a. Grain yield and quality of wheat are improved through post-flowering foliar application of zinc and 6-benzylaminopurine under water deficit condition. Frontiers in Plant Science, 13, 1068649. https://doi.org/10.3389/fpls.2022.1068649.
Zarea, M. J., & Karimi, N. 2023b. Zinc-Regulated P5CS and sucrose transporters SUT1B expression to enhance drought stress tolerance in wheat. Journal of Plant Growth Regulation, 42, 5831-5841. https://doi.org/10.1007/s00344-023-10968-3.
Zhang, H., Richards, R. A., Riffkin, P., Berger, J. D., Christy, B., O'Leary, G., Acuña, T., & Merry, A. 2019. Wheat grain number and yield: The relative importance of physiological traits and source-sink balance in southern Australia. European Journal of Agronomy, 110, 125935. https://doi.org/10.1016/j.eja.2019.125935