Andrejic, G., Gajic, G., Prica, M., Dželetović, Ž., & Rakić, T. 2018. Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus × giganteus plants. Photosynthetica, 56, 1249-1258. https://doi.org/10.1007/s11099-018-0827-3.
Anwar, M. Y., Kayani, Z. N., & Hassan, A. 2021. An insight of physical and antibacterial properties of Au-doped ZnO dip coated thin films. Optical Materials, 118, 111276. https://doi.org/10.1016/j.optmat.2021.111276
Bates, L. S., Waldran, R. P., & Teare, I. D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-208. https://doi.org/10.1007/BF00018060.
Cakmak, I, 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?. Plant and Soil, 302, 1-17. https://doi.org/10.1007/s11104-007-9466-3.
Cakmak, I., Kalayc, M., Ekiz, H., Braun, H., Kılınç, Y., & Yılmaz, A. 1999. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crops Research, 60, 175–188. https://doi.org/10.1016/S0378-4290(98)00139-7.
Choukri, M., Abouabdillah, A., Bouabid, R., Abd-Elkader, O. H., Pacioglu, O., Boufahja, F., & Bourioug, M. 2022. Zn application through seed priming improves productivity and grain nutritional quality of silage corn. Saudi Journal of Biological Sciences, 29(12), 103456.https://doi.org/10.1016/j.sjbs.2022.103456.
Desta, M. K., Broadley, M. R., McGrath, S. P., Hernandez-Allica, J., Hassall, K. L., Gameda, S., Amedem T., & Haefele, S. M. 2023. Linking oil adsorption-desorption characteristics with grain zinc concentrations and uptake by teff, wheat and maize in different landscape positions in Ethiopia. Frontire in Agronomy, 5, 1285880. https://doi.org/10.3389/fagro.2023.1285880
Dhaliwal, S. S., Sharma, V., Shukla, A. K., Verma, V., Behera, S. K., Singh, P., & Singh, H. 2022. Foliar zinc application for zinc biofortification in diverse wheat genotypes under low Zn soil. Cereal Research Communications, 50, 1269-1277. https://doi.org/10.1007/s42976-022-00251-8.
Doolette, C., Read, T., Howell, N., Cresswell, T., & Lombi, E. 2020. Zinc from foliar-applied nanoparticle fertilizer is translocated to wheat grain: a 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilizers. Science of the Total Environment, 749, 142369. https://doi.org/10.1016/j.scitotenv.2020.142369.
Harris, D., Rashid, A., Miraj, G., Arif, M., & Yunas, M. 2008. ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant and Soil, 306, 3-10. https://doi.org/10.1007/s11104-007-9506-z.
Haslett, B. S., Reid, R. J., & Rengel, Z. 2001. Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Annals of Botany, 87, 379-386. https://doi.org/10.1006/anbo.2000.1349.
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., Garnczarska, M. 2022. Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review. International Journal of Molecular Sciences, 23, 5186. https://doi.org/10.3390/ijms23095186.
Ivanović, D., Dodig, D., Đurić, N., Kandić, V., Tamindžić, G., Nikolić, N., & Savić, J. 2021. Zinc biofortification of bread winter wheat grain by single zinc foliar application. Cereal Research Communications, 49, 673-679. https://doi.org/10.1007/s42976-021-00144-2
Jones, J. N. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC Press.
Kamran, A., Ghazanfar, M., Khan, J. S., Pervaiz, S., Siddiqui, M. H., & Alamri, S. A. 2023. "Zinc absorption through leaves and subsequent translocation to the grains of bread wheat after foliar spray. Agriculture, 9, 1775. https://doi.org/10.3390/agriculture13091775.
Li, G., Li, C., Rengel, Z., Liu, H., & Zhao, P. 2020. Excess Zn-induced changes in physiological parameters and expression levels of TaZips in two wheat genotypes. Environmental and Experimental Botany, 177, 104133. https://doi.org/10.1016/j.envexpbot.2020.104133.
Livak, K. J., & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods. 25, 402-8. https://doi.org/10.1006/meth.2001.1262.2
Luo, H., Du, B., He, L., He, J., Hu, L., Pan, S., & Tang, X. 2019. Exogenous application of zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2-AP) biosynthesis in different fragrant rice genotypes. Scientific Report, 9, 19513. https://doi.org/10.1038/s41598-019-56159-7.
Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M., & Arvin, M. J. 2018. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 13, 461-471. https://doi.org/10.1080/17429145.2018.1506516.
Mohammadi, R., Aghaee Sarbarze, M., Haghparast, R., Armion,M., SadeghzadehAhari, D., & Roustaii, M. 2010. Saji, A New Durum Wheat Cultivar Adapted to Rainfed and Supplementary Irrigation Conditions of Moderate Cold and Moderate Warm Areas of Iran. Seed and Plant Journal, 26, 561-565. https://doi.org/10.22092/spij.2017.111043.
Nguyen, T. D., Cavagnaro, T. R. & Watts-Williams, S. J. 2019. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Science Report, 9, 14880. https://doi.org/10.1038/s41598-019-51369-5.
Ozturk, L., Yazici, M. A., Yucel, C., Torun, A. A., Çekiç, C., Bağci, A., Özkan, H., Braun, H., Sayers, Z., & Cakmak, I. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum, 128, 144-152. https://doi.org/10.1111/j.1399-3054.2006.00737.x.
Pavia, I., Roque, J., Rocha, L., Ferreira, H., Castro, C., Carvalho, A., Silva, E., Brito, C., Gonçalves, A., Lima-Brito, J., & Correia, C. 2019. Zinc priming and foliar application enhances photoprotection mechanisms in drought-stressed wheat plants during anthesis. Plant Physiology and Biochemistry, 140, 27-42. https://doi.org/10.1016/j.plaphy.2019.04.028.
Pearson, J. N, Rengel, Z., Jenner, C. F., & Graham, R. D.1996. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears. Physiologia Plantarum, 98, 229-234. https://doi.org/10.1034/j.1399-3054.1996.980202.x.
Pearson, J. N., & Rengel, Z. 1995. Uptake and distribution of 65Zn and 54Mn in wheat grown at sufficient and deficient levels of Zn and Mn II. during grains development. Journal of Experimental Botany, 46, 841-845. https://doi.org/10.1093/jxb/46.7.841.
Pearson, J. N., Rengel, Z., Jenner, C. F., & Graham, R. D. 1995 Transport of zinc and manganese to developing wheat grains. Physiologia Plantarum, 95, 449-455. https://doi.org/10.1111/j.1399-3054.1995.tb00862.x.
Poblaciones, M. J., & Rengel, Z. 2017. Combined foliar selenium and zinc biofortification in field pea (Pisum sativum): accumulation and bioavailability in raw and cooked grains. Crop and Pasture Science, 68, 265-271. https://doi.org/10.1071/CP17082.
Praharaj, S., Skalicky, M., Maitra, S., Bhadra, P., Shankar, T., Brestic, M., Hejnak, V., Vachova, P., & Hossain, A. 2021. Zinc Biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules. 26, 3509. https://doi.org/ 10.3390/molecules26123509.
Read, T. L., Doolette, C. L., Li, C., Schjoerring, J. K., Kopittke, P. M., Donner, E., & Lombi, E. 2020. Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption? Physiologia Plantarum, 170, 384-397. https://doi.org/10.1111/ppl.13167.
Saha, B. N., Saha, S., Saha, S., Deb Roy, P., Bhowmik, A., & Hazra, G. C. 2020. Zinc (Zn) application methods influences Zn and iron (Fe) bioavailability in brown rice. Cereal Research Communications, 48, 293-299. https://doi.org/10.1007/s42976-020-00038-9.
Sattar, A., Wang, X., Ul-Allah, S., Sher, A., Ijaz, M., Irfan, M., Abbas, T., Hussain, S., Nawaz, F., Al-Hashimi, A., Al Munqedhi, B. M., & Skalicky, M. 2022. Foliar application of zinc improves morpho-physiological and antioxidant defense mechanisms, and agronomic grain biofortification of wheat (Triticum aestivum L.) under water stress. Saudi Journal of Biological Sciences, 29, 1699-1706. https://doi.org/10.1016/j.sjbs.2021.10.061.
Shemi, R., Wang, R., Gheith, E. S. M. S., Hussain, H. A., Cholidah, L., Zhang, K., Zhang, S, & Wang, L. 2021. Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages. BMC Plant Biology, 21, 1-15. https://doi.org/10.1186/s12870-021-03367-x
Stewart, R. R. C., & Bewley, J. D. 1980. Lipid peroxidation associated aging of soybean axes. Plant Physiology, 65, 245-248. https://doi.org/10.1104/pp.65.2.245.
Wang, S., Li, M., Liu, K., Tian, X., Li, S., Chen, Y., & Jia, Z. 2017. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality. PloS One, 12, e0181276. https://doi.org/10.1371/journal.pone.0181276
Wessells, K. R., & Brown, K. H. 2012. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One, 7, e50568. https://doi.org/10.1371/journal.pone.0050568
Xia, H., Xue, Y., Liu, D., Kong, W., Xue, Y., Tang, Y., Li, J., Li, D., & Mei, P. 2018. Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Frontiers in Plant Science, 9, 677. https://doi.org/10.3389/fpls.2018.00677
Yang, D., Ni, R., Yang, S., Pu, Y., Qian, M., Yang, Y., & Yang, Y. 2021. Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions. International Journal of Molecular Sciences, 22, 9599. https://doi: 10.3390/ijms22179599.
Zarea, M. J., & Karimi, N. 2023a. Grain yield and quality of wheat are improved through post-flowering foliar application of zinc and 6-benzylaminopurine under water deficit condition. Frontiers in Plant Science, 13, 1068649. https://doi.org/10.3389/fpls.2022.1068649.
Zarea, M. J., & Karimi, N. 2023b. Zinc-Regulated P5CS and sucrose transporters SUT1B expression to enhance drought stress tolerance in wheat. Journal of Plant Growth Regulation, 42, 5831-5841. https://doi.org/10.1007/s00344-023-10968-3.
Zhang, H., Richards, R. A., Riffkin, P., Berger, J. D., Christy, B., O'Leary, G., Acuña, T., & Merry, A. 2019. Wheat grain number and yield: The relative importance of physiological traits and source-sink balance in southern Australia. European Journal of Agronomy, 110, 125935. https://doi.org/10.1016/j.eja.2019.125935