واکنش زنجیره‌ای پلیمراز: انواع، کاربرد‌ها، ابزارهای بیوانفورماتیک و راهنمای طراحی آغازگر با تأکید بر غلات

نوع مقاله : مروری

نویسندگان

1 گروه تولید و ژنتیک گیاهی دانشکده کشاورزی دانشگاه ارومیه. ارومیه، ایران.

2 گروه بیوتکنولوژی کشاورزی دانشکده کشاورزی دانشگاه تربیت مدرس. تهران، ایران.

چکیده

مقدمه: واکنش زنجیره­ای پلیمراز (PCR) یک فناوری بسیار مهم و کاربردی در زمینه­های مختلف علوم زیستی و پزشکی می‌باشد. با استفاده از این تکنیک می‌توان در شرایط درون‌شیشه‌ای (in vitro) با حداقل مقدار DNA، میلیون­ها نسخه از یک الگوی مشخص را تکثیر نمود. این امر پیشرفت­های عمده‌ای در زیست‌‌‌‌شناسی مولکولی و پزشکی رقم زده است. این تکنیک، کاربرد‌های بسیار متنوعی در علوم زیستی دارد. آغازگرهای PCR جزء جدایی‎ناپذیر PCR هستند. آغازگرهایی که به خوبی طراحی شوند، به سیستم PCR اجازه می­دهند تا با دقت کار کند. برای ایجاد یک جفت آغازگر خوب PCR، عوامل متعددی از جمله طول جفت باز، دمای ذوب و اتصال، تکرار جفت باز و غیره باید در نظر گرفته شوند. آغازگرهای PCR که با دقت طراحی می‌شوند، نه­ تنها حساسیت و اختصاصیت را افزایش می­دهند، بلکه تلاش صرف شده برای بهینه­سازی تجربی را نیز کاهش می­دهند؛ در حالیکه PCR به یکی از با ارزش ترین تکنیک هایی تبدیل شده است که در حال حاضر در علوم زیستی، تشخیصی و پزشکی قانونی استفاده می شود.
PCR has become one of the most valuable techniques currently used in life sciences, diagnostics and forensics.
PCR به یکی از با ارزش ترین تکنیک ها تبدیل شده است که در حال حاضر در علوم زیستی، تشخیصی و پزشکی قانونی مورد استفاده قرار می گیرد.
PCR has become one of the most valuable techniques currently used in life sciences, diagnostics and forensics.
«نتایج کامل» بار نشد
امتحان مجدد
درحال تلاش مجدد…
طراحی ضعیف آغازگر‌ همراه با عدم بهینه­سازی شرایط واکنش احتمالاً منجر به کاهش دقت فنی و تشخیص مثبت یا منفی کاذب در تکثیر قطعات DNA هدف می­شود. بیوانفورماتیک نه تنها برای تحقیقات پایه، بلکه برای تحقیقات کاربردی در علوم زیستی به ابزاری اساسی تبدیل شده است. ابزارهای طراحی آغازگر‌ با خودکارسازی محاسبات پیچیده و دقیق در کمترین زمان ممکن طراحی بهینه و کارآمد آغازگر‌ها را فراهم می­کنند.
مواد و روش‌ها: مقاله حاضر یک مقاله مروری می­باشد که به شیوه تحلیل محتوا (Content analysis) با جستجوی کلید واژه­های واکنش زنجیره­ای پلی­مراز (PCR)، انواع PCR، طراحی آغازگر برای PCR در مقاله­های مرتبط در پایگاه­های اینترنتیGoogle scholar ،Web of science ،PubMed  و Scopus به دست آمده است.
یافته‌ها: این مقاله قصد دارد با مروری بر روش PCR، انواع و کاربردهای آن و با استفاده از پیوندها و خدمات موجود در وب، راهنمایی‌ تقریباً کاملی به منظور طراحی آغازگر‌های کارآمد و بهینه برای آنالیز‌های PCR و qPCR ارائه نماید. در این راستا، در قسمت اول مقاله انواع روش­ها از قبیل PCR استاندارد، PCR رونویسی معکوس (RT- PCR)، PCR کمی (qPCR)، RT-PCR/qPCR ترکیبی و ... با ارایه شکل‏های مناسب توضیح داده شده­ است. در ادامه کاربرد انواع PCRها با تأکید بر تحقیقات غلات خلاصه شده است. در انتها، روش­های طراحی آغازگر خصوصاً برای qPCR، طبقه­بندی و بررسی نرم­افزارهای موجود و قابلیت­های آن‎ها، روش­ها و نرم­افزارهای بررسی خصوصیات آغازگرها برای کسب حداکثر اختصاصیت و کارایی PCR، نحوه استخراج توالی ژن در طراحی آغازگر برای PCR با ارایه مثال­های عملی ارایه شده است.
نتیجه‌گیری: یک PCR با آغازگرهای ضعیف به دلیل تکثیر غیر اختصاصی و یا تشکیل دیمر آغازگر، می­تواند محصول کمی داشته باشد یا اصلاً محصولی به دنبال نداشته باشد. ابزار‌های آنلاین متعددی معرفی شدند که برای تهیه آغازگرهای مؤثر برای PCR در زمینه زیست مولکولی استفاده می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Polymerase Chain Reaction: Types, Applications, Bioinformatics Tools and Guideline for Primer Design with emphasis on cereals

نویسندگان [English]

  • Mona Bordbar 1
  • Reza Darvishzadeh 1
  • Morad Jafari 1
  • Danial Kahrizi 2
1 Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
2 Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modarres University, Tehran, Iran.
چکیده [English]

Introduction: Polymerase chain reaction (PCR) is a critical and practical technology in various biological and medical sciences fields. Using this technique, millions of copies of a specific pattern can be reproduced in vitro with a minimal amount of DNA. This has made significant advances in molecular biology and medicine. This technique has many applications in biological sciences. PCR primers are an integral part of PCR. Well-designed primers allow the PCR system to work accurately. To create a good PCR primer pair, several factors must be considered, including base pair length, melting and annealing temperature, base pair repeats, etc. Carefully designed PCR primers increase sensitivity and specificity and reduce the effort spent on experimental optimization. The poorly designed primer and the lack of optimization of the reaction conditions probably lead to decreased technical accuracy and false positive or negative detection in the amplification of the target DNA fragments. Bioinformatics has become an essential tool for basic research and applied research in life sciences. Primer designing tools provide optimal and efficient design of primers by automating complex and accurate calculations in the shortest possible time.
Materials and methods: This review article is a content analysis study performed by searching Polymerase Chain Reaction (PCR), PCR type, and primer design for PCR in related articles on Google Scholar, Web of Science, PubMed and Scopus.
Results: This article aims to provide an almost complete guide for designing efficient and optimal primers for PCR and qPCR analyses by reviewing the PCR method, its types and applications and using the links and web-based services. In this regard, in the first part of the article, various methods, such as standard PCR, reverse transcription PCR (RT-PCR), quantitative PCR (qPCR), combined RT-PCR/qPCR, etc., will be explained with suitable figures. The following summarizes the use of PCR types, emphasizing cereal research. In the end, primer design methods, especially for qPCR, classification and review of existing software and their capabilities, methods and software for testing the features of primers to obtain maximum specificity and PCR efficiency, extracting the gene sequence for PCR primer designing is presented with practical examples.
Conclusion: A PCR with weak primers can produce little or no product due to non-specific amplification or primer dimer formation. Several online tools were introduced that are used to prepare effective primers for PCR in the field of molecular biology.

کلیدواژه‌ها [English]

  • Bioinformatics
  • Conventional PCR
  • Real-Time PCR
  • Primer design
Al Mazrooei, S. S., & Alreshidi, D. R. 2023. PCR-screening of genetically modified organisms in food and feed products sold in Kuwait's market. Kuwait Journal of Science.
Baechtel, F.S., & Quantico, V. 1989. The extraction, purification and quantification of DNA. In Proceedings of the International Symposium on the Forensic Aspects of DNA Analysis (pp. 25-28). United States Government Printing Office.
Baltimore, D. 1970. Viral RNA-dependent DNA polymerase: RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature, 226(5252), 1209-1211.
Banifatemeh, M., Darvishzadeh, R., & Arzhang, S. 2021. The expression pattern of ZmNHX1, ZmHKT1, and ZmMYB30 genes in maize under salinity stress. Agricultural Biotechnology Journal, 13(1), 137-158.
Bebenek, K., & Kunkel, T.A. 1989. The use of native T7 DNA polymerase for site-directed mutagenesis. Nucleic Acids Research, 17(13), 5408.
Benson, L.M., Null, A.P., & Muddiman, D.C. 2003. Advantages of Thermococcus kodakaraenis (KOD) DNA polymerase for PCR-mass spectrometry based analyses. Journal of the American Society for Mass Spectrometry, 14(6), 601-604.
Breslauer, K.J., Frank, R., Blöcker, H., & Marky, L.A. 1986. Predicting DNA duplex stability from the base sequence. Proceedings of the National Academy of Sciences, 83(11), 3746-3750.
Brock, T.D., & Freeze, H. 1969. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. Journal of Bacteriology, 98(1), 289-297.
Bustin, S., & Huggett, J. 2017. qPCR primer design revisited. Biomolecular Detection and Quantification, 14, 19-28.
Butler, J.M. 2005. Forensic DNA typing: biology, technology, and genetics of STR markers. Elsevier.
Cahill, P., Bakis, M., Hurley, J., Kamath, V., Nielsen, W., Weymouth, D, ... & Smith, D.R. 2003. Exo-proofreading, a versatile SNP scoring technology. Genome Research, 13(5), 925-931.
Carracedo, A. (Ed.). 2005. Forensic DNA typing protocols (Vol. 297). Springer Science & Business Media.
Chen, H., & Zhu, G. 1997. Computer program for calculating the melting temperature of degenerate oligonucleotides used in PCR or hybridization. Biotechniques, 22(6), 1158-1160.
Chou, Q., Russell, M., Birch, D.E., Raymond. J, & Bloch, W. 1992. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Research, 20(7), 1717-1723.
Dale, R.M.K., McClure, B.A., & Houchins, J.P. 1985. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18 S rDNA. Plasmid, 13(1), 31-40.
Deepa, N., Adkar-Purushothama, C. R., & Sreenivasa, M. Y. 2016. Nested PCR method for early detection of fumonisin producing Fusarium verticillioides in pure cultures, cereal samples and plant parts. Food Biotechnol, 30(1), 18-29.
Diaz, R.S., & Sabino, E.C. 1998. Accuracy of replication in the polymerase chain reaction. Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase. Brazilian Journal of Medical and Biological Research, 31(10), 1239-1242.
Dieffenbach, C.W., Lowe, T.M., & Dveksler, G.S. 1993. General concepts for PCR primer design. PCR Methods Appl., 3(3), S30-S37.
Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K., & Mattick, J.S. 1991. 'Touchdown'PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research, 19(14), 4008.
Dreier, J., Störmer, M., & Kleesiek, K. 2007. Real-time polymerase chain reaction in transfusion medicine: applications for detection of bacterial contamination in blood products. Transfusion Medicine Reviews, 21(3), 237-254.
Elbeaino, T., Whitfield, A., Sharma, M., & Digiaro, M. 2013. Emaravirus-specific degenerate PCR primers allowed the identification of partial RNA-depende nt RNA polymerase sequences of Maize red stripe virus and Pigeonpea sterility mosaic virus. Journal of Virological Methods, 188(1-2), 37-40.
Erlich, H.A., Gelfand, D., & Sninsky, J.J. 1991. Recent advances in the polymerase chain reaction. Science, 252(5013), 1643-1651.
Gachon, C., Mingam, A., & Charrier, B. 2004. Real-time PCR: what relevance to plant studies? Journal of Experimental Botany, 55(402), 1445-1454.
Hara, P.J., & Venezia, D. 1991. PRIMEGEN, a tool for designing primers from multiple alignments. Bioinformatics, 7(4), 533-534.
Hayden, M.J., Nguyen, T.M., Waterman, A., & Chalmers, K.J. 2008. Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics, 9(1), 1-12.
He, Q., Marjamäki, M., Soini, H., Mertsola, J., & Viljanen, M.K. 1994. Primers are decisive for sensitivity of PCR. Biotechniques, 17(1), 82-84.
Higuchi, R., Dollinger, G., Walsh, P.S., & Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology, 10(4), 413-417.
Huang, X. Q., & Cloutier, S. 2007. Hemi-nested touchdown PCR combined with primer-template mismatch PCR for rapid isolation and sequencing of low molecular weight glutenin subunit gene family from a hexaploid wheat BAC library. BMC Genetics, 8(1), 1-9.
Innis, M.A., Myambo, K.B., Gelfand, D.H., & Brow, M.A. 1988. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proceedings of the National Academy of Sciences, 85(24), 9436-9440.
Isenbarger, T.A., Finney, M., Ríos-Velázquez, C., Handelsman, J., & Ruvkun, G. 2008. Miniprimer PCR, a new lens for viewing the microbial world. Applied and Environmental Microbiology, 74(3), 840-849.
Jabeen, U., Ali, A., Ullah, S., Mushtaque, R., Naqvi, S. W. H., Uddin, J., ... & Al-Harrasi, A. 2023. Screening of food allergens in cereals using real-time PCR. Revue Française d'Allergologie, 63(4), 103620.
Jiang, Y., Ren, Y., Xu, X., Wang, H., & Wei, C. 2022. Application of allele specific PCR in identifying offspring genotypes of bi-allelic sbeIIb mutant lines in rice. Plants, 11(4), 524.
Js, C. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research, 93, 265-269.
Kaledin, A.S., Sliusarenko, A.G., & Gorodetskiĭ, S.I. 1980. Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1. Biokhimiia (Moscow, Russia), 45(4), 644-651.
Kanoksilapatham, W., González, J.M., Maeder, D.L., DiRuggiero, J., & Robb, F.T. 2004. A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei. Archaea, 1(4), 277-283.
Kermekchiev, M.B., Kirilova, L.I., Vail, E.E, & Barnes, W.M. 2009. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Research, 37(5), e40-e40.
Khorana, H.G., Agarwal, K.L., Besmer, P., Büchi, H., Caruthers, M.H., Cashion, P.J., ... & Van de Sande, J.H. 1976. Total synthesis of the structural gene for the precursor of a tyrosine suppressor transfer RNA from Escherichia coli. 1. General introduction. Journal of Biological Chemistry, 251(3), 565-570.
Kilger, C., Krings, M., Poinar, H., & Pääbo, S. 1997. “Colony sequencing”: direct sequencing of plasmid DNA from bacterial colonies. Biotechniques, 22(3), 412-418.
Kim, S. R., Jeon, J. S., & An, G. 2011. Development of an efficient inverse PCR method for isolating gene tags from T-DNA insertional mutants in rice. Plant Reverse Genetics: Methods and Protocols, 139-146.
Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I., & Khorana, H.G. 1971. Studies on polynucleotides: XCVI. Repair replication of short synthetic DNA's as catalyzed by DNA polymerases. Journal of Molecular Biology, 56(2), 341-361.
Kunkel, T.A., Roberts, J.D., & Zakour, R.A. 1987. [19] Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymology, 154, 367-382.
Kwok, S., Kellogg, D.E., McKinney, N., Spasic, D., Goda, L., Levenson, C., & Sninsky, J.J. 1990. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Research, 18(4), 999-1005.
Kwok, S., Mack, D.H., Mullis, K.B., Poiesz, B., Ehrlich, G., Blair, D., ... & Sninsky, J.J. 1987. Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. Journal of Virology, 61(5), 1690-1694.
Lang, M., & Orgogozo, V. 2012. Identification of homologous gene sequences by PCR with degenerate primers. In Molecular methods for evolutionary genetics (pp. 245-256). Humana Press.
Li, P., Kupfer, K.C., Davies, C.J., Burbee, D., Evans, G.A., & Garner, H.R. 1997. PRIMO: a primer design program that applies base quality statistics for automated large-scale DNA sequencing. Genomics, 40(3), 476-485.
Ling, X. Y., Zhang, G., Pan, G., Long, H., Cheng, Y., Xiang, C., ... & Chen, Z. 2015. Preparing long probes by an asymmetric polymerase chain reaction-based approach for multiplex ligation-dependent probe amplification. Analytical Biochemistry, 487, 8-16.
Linz, U., Delling, U., & Rübsamen-Waigmann, H. 1990. Systematic studies on parameters influencing the performance of the polymerase chain reaction. Journal of Clinical Chemistry and Clinical Biochemistry (Zeitschrift fur Klinische Chemie und Klinische Biochemie), 28(1), 5-13.
Liu, M.Q., Shen, X., Yin, W.L., & Lu, C.F. 2007. Changes of 5′ Terminal Nucleotides of PCR Primers Causing Variable T‐A Cloning Efficiency. Journal of Integrative Plant Biology, 49(3), 382-385.
Lowe, T., Sharefkin, J., Yang, S.Q., & Dieffenbach, C.W. 1990. A computer program for selection of oligonucleotide primers for polymerase chain reactions. Nucleic Acids Research 18(7): 1757-1761.
Lucas, K., Busch, M., Mössinger, S., & Thompson, J.A. 1991. An improved microcomputer program for finding gene-or gene family-specific oligonucleotides suitable as primers for polymerase chain reactions or as probes. Bioinformatics, 7(4), 525-529.
Mackay, I.M. 2004. Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection, 10(3), 190-212.
Makarova, K.S., Mazin, A.V., Wolf, Y.I., & Soloviev, V.V. 1992. DIROM: an experimental design interactive system for directed mutagenesis and nucleic acids engineering. Bioinformatics, 8(5), 425-431.
Mattila, P., Korpela, J., Tenkanen, T., & Pitkämem, K. 1991. Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity. Nucleic Acids Research, 19(18), 4967-4973.
Moon, J. C., Kim, J. H., & Jang, C. S. 2016. Development of multiplex PCR for species-specific identification of the Poaceae family based on chloroplast gene, rpoC2. Applied Biological Chemistry, 59, 201-207.
Müller, C.R. 2001. Quality control in mutation analysis: The European molecular genetics quality network (EMQN). European Journal of Pediatrics, 160(8), 464-467.
Mullis, K.B., & Faloona, F.A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology, 155, 335-350.
Myers, T.W., & Gelfand, D.H. 1991. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry, 30(31), 7661-7666.
Newton, C.R., Graham, A., Heptinstall, L.E., Powell, S.J., Summers, C., Kalsheker, N., ... & Markham, A.F. 1989. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Research, 17(7), 2503-2516.
Ochman, H., Gerber, A.S., & Hartl, D.L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics, 120(3), 621-623.
Osborne, B.I. 1992. HyperPCR: A Macintosh HyperCard program for the determination of optimal PCR annealing temperature. Computer Applications in the Biosciences, 8(1), 83.
Plourde-Owobi, L., Seguin, D., Baudin, M.A., Moste, C., & Rokbi, B. 2005. Molecular characterization of Clostridium tetani strains by pulsed-field gel electrophoresis and colony PCR. Applied and Environmental Microbiology, 71(9), 5604-5606.
Primer Design Tips & Tools, http://www.lifetech nologies.com/in/en/home/products-and-services/ product-types/primers-oligos-nucleotides /invitrogen-custom-dna-oligos/primer-designtools.html.
Quill, E. 2008. Blood-matching goes genetic. Science, 319(5869), 1478-1479.
Rothwell, P.J., & Waksman, G. 2005. Structure and mechanism of DNA polymerases. Advances in Protein Chemistry, 71, 401-440.
Roux, K.H. 1995. Optimization and troubleshooting in PCR. Genome Research, 4(5), S185-S194.
Rychlik, W., & Rhoads, R.E. 1989. A computer program for choosing optimal oligonudeotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Research, 17(21), 8543-8551.
Rychlik, W., Spencer, W.J., & Rhoads, R.E. 1990. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research, 18(21), 6409-6412.
Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., & Arnheim, N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732), 1350-1354.
Shampo, M.A., & Kyl, R.A. 2002. Kary B. Mullis—Nobel Laureate for procedure to replicate DNA. In Mayo Clinic Proceedings, 77(7), 606.
Sheffield, V.C., Cox, D.R., Lerman, L.S., & Myers, R.M. 1989. Attachment of a 40-base-pair G+ C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proceedings of the National Academy of Sciences, 86(1), 232-236.
Singh, J., Birbian, N., Sinha, S., & Goswami, A. 2014. A critical review on PCR, its types and applications. Int. J. Adv. Research in Biological Sciences, 1(7), 65-80
Singh, V.K., & Kumar, A. 2001. PCR primer design. Molecular Biology Today, 2(2), 27-32.
Tamura, T., Holbrook, S.R., & Kim, S.H. 1991. A Macintosh computer program for designing DNA sequences that code for specific peptides and proteins. Biotechniques, 10(6), 782-784.
Taylor, S., Wakem, M., Dijkman, G., Alsarraj, M., & Nguyen, M. 2010. A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods, 50(4), S1-S5.
Temin, H. M., & Mizutani, S. 2010. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature, 226 (5252): 1211-1213.
Thornton, B., & Basu, C. 2011. Real‐time PCR (qPCR) primer design using free online software. Biochemistry and Molecular Biology Education, 39(2), 145-154.
Ugozzoli, L., & Wallace, R.B. 1991. Allele-specific polymerase chain reaction. Methods, 2(1), 42-48.
Varkonyi-Gasic, E., & Hellens, R.P. 2010. qRT-PCR of small RNAs. In Plant Epigenetics (pp. 109-122). Humana Press.
Wallace, R.B., Shaffer, J., Murphy, R.F., Bonner, J., Hirose, T., & Itakura, K. 1979. Hybridization of synthetic oligodeoxyribonucleotides to ΦX 174 DNA: the effect of single base pair mismatch. Nucleic Acids Research, 6(11), 3543-3558.
Wang, Y., Prosen, D.E., Mei, L., Sullivan, J.C., Finney, M., & Vander Horn, P.B. 2004. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Research, 32(3), 1197-1207.
Watson, J.D., & Crick, F.H. 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171(4356), 737-738.
Wilks, A.F., Kurban, R.R., Hovens, C.M., & Ralph, S.J. 1989. The application of the polymerase chain reaction to cloning members of the protein tyrosine kinase family. Gene, 85(1): 67-74.
Wong, M. L., & Medrano, J. F. 2005. Real-time PCR for mRNA quantitation. Biotechniques, 39(1), 75-85.
Wood, K.A., Dipasquale, B., & Youle, R.J. 1993. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron, 11(4), 621-632.
Wu, D.Y., Ugozzoli, L., Pal, B.K., Qian, J., & Wallace, R.B. 1991. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA and Cell Biology, 10(3), 233-238.
Xu, R., Chen, Q., Robleh Djama, Z., & Tambong, J. T. 2010. Miniprimer PCR assay targeting multiple genes: a new rapid and reliable tool for genotyping Pantoea stewartii subsp. stewartii. Letters in Applied Microbiology, 50(2), 216-222.
Yesheng, T., Ying, L., Jingjie, Z., Xin, H., Zhixin, L., Bin, H., & Guofan, H. 2002. Colony PCR apply to the rice genome sequencing. Progress in Biochemistry and Biophysics, 29(2), 316-318.
You, F.M., Huo, N., Gu, Y.Q., Luo, M.C., Ma, Y., Hane, D., ... & Anderson, O.D. 2008. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics, 9(1), 1-13.