ارزیابی اثر تنش کم آبیاری بر خصوصیات فیزیولوژیک، بیوشیمیایی و عملکرد دانه برخی ارقام گندم نان و دوروم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار سازمان جهاد دانشگاهی خراسان رضوی، ایران.

2 گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد. مشهد. ایران.

3 استاد گروه زراعت، دانشکده کشاورزی، دانشگاه فردوسی مشهد. مشهد، ایران.

چکیده

مقدمه: گندم به عنوان یکی از اصلی‌ترین مواد غذایی در سفره‌های ایرانی، نقش اساسی در تغذیه مردم و تأمین امنیت غذایی کشور ایفا می‌کند. تنش خشکی به­عنوان یکی از عوامل محدودکننده عملکرد در گیاهان مختلف از جمله گندم مطرح است. در صورت شناسایی شاخص‌های فیزیولوژیکی و بیوشیمیایی تحمل خشکی، به‎نژادگران می‌توانند از صفات فیزیولوژیکی به ‌عنوان شاخص گزینشی در جمعیت‌های بزرگ استفاده کنند.
مواد و روش‌ها: به‌منظور بررسی اثرات سطوح متفاوت رطوبتی بر صفات بیوشیمیایی و فیزیولوژیک در ارقام مختلف گندم نان و دوروم، آزمایشی به‌صورت اسپلیت پلات در قالب طرح بلوک­های کامل تصادفی با سه تکرار در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد اجرا گردید. فاکتورهای مورد بررسی شامل چهار سطح ­آبیاری (25، 50، 75 و 100 درصد نیاز آبی) در کرت­های اصلی و ارقام شامل سه رقم گندم ­نان (پیشگام، الوند، اروم) و سه رقم گندم دوروم (بهرنگ، آریا، دنا) در کرت‎های فرعی قرار گرفتند. صفات بیوشیمیایی مورد بررسی شامل محتوای قند­های محلول، ترکیبات فنلی و آسکوربات پراکسیداز و صفات فیزیولوژیک شامل محتوای کلروفیل a و b و کاروتنوئید بود.
یافته‌ها: در پژوهش حاضر، صفات محتوای کلروفیل a و b، محتوای کاروتنوئیدها، ترکیبات فنلی، فعالیت آنزیم‌ آسکوربات پراکسیداز و محتوای قندهای محلول نیز در شرایط سطوح متفاوت رطوبتی و در ارقام مختلف تفاوت معنی‌داری را نشان دادند. نتایج مقایسه میانگین داده‌ها نشان داد محتوی قندهای محلول، محتوی فنل و فعالیت آنزیم آسکوربات پراکسیداز در ارقام پیشگام و بهرنگ در تیمار تأمین 25 درصد نیاز آبی، نسبت به تیمار شاهد بیشتر بود. بیشترین کاهش در محتوی کلروفیل a مربوط به رقم دنا بود که در تیمار تأمین 25 درصد نیاز آبی، نسبت به تیمار شاهد، 40 درصد کاهش نشان داد. محتوای  کلروفیل b، با کاهش آب مصرفی کاهش یافت و این کاهش در ارقام اروم و دنا بیشتر از سایر ارقام بود. تفاوت معنی‌داری بین محتوای  کلروفیل b رقم پیشگام در سطوح تأمین 100، 75 و 50 درصد نیاز آبی مشاهده نشد. در بین ارقام گندم دوروم، محتوای کلروفیل b در رقم بهرنگ در مواجهه با تنش، کمتر کاهش یافت؛ به‌طوری‌که محتوای کلروفیل b این رقم در تیمارهای 100، 75 و 50 درصد تأمین نیاز آبی، تفاوت معنی‌داری نداشت. در شرایط شدیدترین تنش، بیشترین و کمترین مقدارکاروتنوئید به ترتیب مربوط به رقم‎های پیشگام و دنا بود. کم‌آبیاری منجر به کاهش محتوای کاروتنوئید در همه ارقام مورد بررسی شد. با این حال، ارقام پیشگام و بهرنگ به ترتیب با کاهش 67/15 و 47/15 درصد نسبت به سایر ارقام، کمترین کاهش را در میزان کاروتنوئید تجربه کردند. در مقابل، رقم دنا بیشترین کاهش را نشان داد و میزان کاروتنوئید در آن 50 درصد نسبت به شرایط بدون تنش آبیاری کاهش یافت. بیشترین عملکرد دانه (به‌ترتیب 7/7420، 6/6495 و 9/6459 کیلوگرم در هکتار) توسط ارقام پیشگام، بهرنگ و الوند تولید شد که از نظر آماری با همدیگر اختلاف معنی‎داری نداشتند. همچنین کمترین عملکرد دانه (4880 کیلوگرم در هکتار) مربوط به رقم اروم بود. عملکرد دانه با کاهش تأمین نیاز آبی کاهش یافت؛ به‌طوری‌که بیشترین عملکرد دانه (7350 کیلوگرم درهکتار) و کمترین (4550 کیلوگرم درهکتار) به‌ترتیب در تیمارهای 100 درصد و تأمین 25 درصد نیاز آبی تولید شد.
نتیجه‌گیری: به­طور کلی نتایج نشان داد که تیمار 25 درصد نیاز آبی به‌طور چشمگیری عملکرد دانه را کاهش داد؛ به‌طوریکه از 7350 به 4550 کیلوگرم در هکتار رسید. همچنین در بین ارقام، ارقام پیشگام و بهرنگ در مقایسه با سایر ارقام از عملکرد بالاتری برخوردار بودند که نشان از پتانسیل ژنتیکی این ارقام در تولید و عملکرد محصول ‌می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the effects of water dificit stress on the physiological and biochemical indices and grain yield of some durum and bread wheat cultivars

نویسندگان [English]

  • Sadegh Baghbankhalilabad 1
  • Hamid Reza Khazaie 2
  • Mohammad Kafi 3
1 Assistant Professor of Academic Center for Education, Culture and Research, Khorasan Razavi, Iran.
2 Professor of Agronomy Department, Faculty of Agriculture, Ferdowsi University of Mashhad. Mashhad, Iran.
3 Professor of Agronomy Department, Faculty of Agriculture, Ferdowsi University of Mashhad. Mashhad, Iran.
چکیده [English]

Introduction: Wheat is one of the most crucial products used in Iran, and it plays a vital role in ensuring food security. Drought stress is a significant factor that restricts the yield of several plant species, including wheat. By identifying physiological and biochemical indicators of drought tolerance, breeders can effectively utilize these traits as selection indicators in large populations.
Materials and methods: To investigate the effects of different moisture levels on biochemical and physiological in various cultivars of bread and durum wheat, we conducted an experiment using a split-plot design. The experiment followed a randomized complete block design with three replications. The investigated factors include four levels of irrigation (100, 75, 50 and 25% of water supply) in the main plots and cultivars, including three varieties of bread wheat (Pishgam, Alvand and Oroum) and three varieties of durum wheat (Behrang, Aria and Dena) were placed in the sub-plot. The investigated biochemical traits included the content of soluble sugars, phenolic compounds, ascorbate peroxidase, and the physiological traits included the content of chlorophyll a, chlorophyll and b and carotenoids.
Results: The present study showed significant differences in the characteristics of chlorophyll a and b content, carotenoid content, phenolic compounds, ascorbate peroxidase enzyme activity, and soluble sugar content in water deficit stress conditions and among different cultivars. The content of soluble sugars, phenol content, and ascorbate peroxidase activity in Pishgam and Behrang varieties showed that they were higher than other cultivars when subjected to a 25% water supply treatment. The largest decrease in the content of chlorophyll a was related to the Dena variety, which showed a 40% decrease in the treatment of providing 25% water supply compared to the control treatment. The content of chlorophyll b decreased with the reduction of water supply, and this decrease was greater in Oroum and Dena varieties than in other varieties. No significant difference was observed in the content of chlorophyll b in the Pishgam variety at the levels of 100, 75, and 50% of water supply. Among the durum wheat varieties, the content of chlorophyll b in Behrang was reduced when faced with less stress, resulting in no significant difference in the chlorophyll b content of this variety in the treatments of 100, 75, and 50% of water supply. In the most severe stress conditions, the Pishgam and Dena varieties had the highest and the lowest carotenoid values, respectively. A lack of irrigation led to a decrease in carotenoid content in all varieties. However, this decrease was less pronounced in the Pishgam and Behrang varieties, with reductions of 15.67% and 15.47%, respectively, compared to other varieties. The Dena verity experienced the highest decrease in carotenoid content, which was 50% compared to the without stress. The Pishgam, Behrang, and Alvand verities had the highest grain yields, with respective yields of 7420.7, 6495.6, and 6459.9 kg ha-1. These yields were not statistically different from each other. The Oroum variety had the lowest grain yield of 4880 kg ha-1. As for grain yield, it decreased as the intensity of low irrigation increased. The highest grain yield of 7350 kg ha-1 was achieved with 100% water requirement treatment, while the lowest grain yield of 4550 kg ha-1 was obtained with 25% water requirement treatment.
Conclusion: Overall, the results indicate that reducing the water requirement by 25% significantly decreased the grain yield from 7350 to 4550 kg ha-1. Among the tested varieties, Pishgam and Behrang performed better than others. This finding highlights the genetic potential of these cultivars in terms of crop production and overall performance.

کلیدواژه‌ها [English]

  • Water dificit
  • physiological indices
  • biochemical traits
  • wheat
Ahmed, H. G. M. D., Sajjad, M., Li, M., Azmat, M. A., Rizwan, M., Maqsood, R. H., & Khan, S. H. 2019. Selection criteria for drought-tolerant bread wheat genotypes at seedling stage. Sustainability, 11(9), 1-17. DOI: 10.3390/su11092584
Amist, N., Bano, C., & Singh, N. B. 2019. Antioxidative machinery for redox homeostasis during abiotic stress. Molecular Plant Abiotic Stress: Biology and Biotechnology, 65-90. DOI:org/10.1002/9781119463665.ch4
Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1. DOI: 10.1104/pp.24.1.1.
Ashraf, M. F., & Foolad, M. R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. DOI: 10.1016/j.envexpbot.2005.12.006
Baccari, S., Elloumi, O., Fenollosa, E., Morales, M., Fki, L., & Munné-Bosch, S. 2020. Linking leaf water potential, photosynthesis and chlorophyll loss with mechanisms of photo-and antioxidant protection in juvenile olive trees subjected to severe drought. Frontiers in Plant Science, 11, p.614144. DOI: 10.3389/fpls.2020.614144
Bao, J., Cai, Y., Sun, M., Wang, G., & Corke, H. 2005. Anthocyanins, flavonols, and free radical scavenging activity of Chinese Bayberry (Myrica rubra) extracts and their color properties and stability. Journal of Agricultural and Food Chemistry, 53, 2327-2332. DOI: 10.1021/jf048312z
Bassi, F. M., & Sanchez‐Garcia, M. 2017. Adaptation and stability analysis of ICARDA durum wheat elites across 18 countries. Crop Science, 57(5), 2419-2430. DOI: 10.2135/cropsci2016.11.0916
Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35, 1011-1019. DOI: 10.1590/s1415-47572012000600016
Czarnocka, W., & Karpiński, S. 2018. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biology and Medicine, 122, 4-20. DOI: 10.1016/j.freeradbiomed.2018.01.011
Dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F., & Domingues, D. S., 2022. Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses, 2(1), 113-135. https://doi.org/10.3390/stresses2010009
Du, X., Zhang, X., Chen, X., Jin, W., Huang, Z., & Kong, L. 2024. Drought stress reduces the photosynthetic source of subtending leaves and the transit sink function of podshells, leading to reduced seed weight in soybean plants. Frontiers in Plant Science, 15, 1337544. https://doi.org/10.3389/fpls.2024.1337544
Eichholz, I., Förster, N., Ulrichs, C., Schreiner, M., & Huyskens-Keil, S. 2014. Survey of bioactive metabolites in selected cultivars and varieties of Lactuca sativa L. under water stress. Journal of Applied Botany and Food Quality, 87.1-14. DOI: 10.5073/JABFQ.2014.087.00X
Esmaeili, A., Zebarjadi, A. R., Nadjaphy, A., & Saeidi, M. 2022. Investigation of activity of antioxidant enzymes under drought stress conditions in some bread wheat advanced genotypes. Cereal Biotechnology and Biochemistry, 1(4). 496-509. DOI: 10.22126/cbb.2022.8408.1023
Farooq, M., Hussain, M., Ul-Allah, S., & Siddique, K. H. 2019. Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management, 219, 95-108. DOI: 10.1016/j.agwat.2019.04.010
Food and Agriculture Organization. 2008. Statistics: FAOSTAT agriculture. Retrieved June 10, 2010. From http://fao.org/crop/statistics.
Garcia-Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V., & Lao, M. T. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review, 87, 421-466. DOI://link.springer.com/article/10.1007/s12229-020-09231-1
Ghaemi, M., Raeini Sarjaz, M., & Mosavi, M. 2013. Estimating the crop coefficient and the water requirement of the Gascogne wheat by using energy balance method in Mashhad. Irrigation and Water Engineering, 3(3), 58-68. DOI: https://www.waterjournal.ir/article_70702.html?lang=en
Ghahremaninejad, F., Hoseini, E., & Jalali, S., 2021. The cultivation and domestication of wheat and barley in Iran, brief review of a long history. The Botanical Review, 87(1), 1-22. DOI: 10.1007/s12229-020-09244-w
Gill, S. S., & Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909-930. DOI: 10.1016/j.plaphy.2010.08.016
Gregersen, P. L., & Holm, P. B. 2007. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Bioechnologyt, 5, 192-206. DOI: 10.1111/j.1467-7652.2006.00232.x
Hadidi, M., Ghobadi, M., Saeidi, M., & Ghobadi, M. E. 2023. Grain yield, its components and some physiologic characteristics of flag leaf in commercial wheat cultivars in response to post-anthesis drought stress. Cereal Biotechnology and Biochemistry, 2(2), 153-169. DOI: 10.22126/cbb.2023.9328.1050
Hasanuzzaman, M., & Fujita M. 2022. Plant Oxidative Stress: Biology, Physiology and Mitigation. Plants, 11(9), 1185. DOI: 10.3390/plants11091185.
Hazrati, S., Tahmasebi-Sarvestani, Z., Modarres-Sanavy, S.A.M., Mokhtassi-Bidgoli, A., & Nicola, S. 2016. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry, 106, 141-148. DOI: 10.1016/j.plaphy.2016.04.046
Hsu, S. Y., & Kao C. H. 2003. The effect of polyethylene glycol on proline accumulation in rice leaves. Biologia plantarum, 46, 73-78. DOI: link.springer.com/article/10.1023/A:1022362117395
Hu, F., Zhang, Y., & Guo, J. 2023. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. Plant Signaling & Behavior, 18(1), 2215025. Doi: 10.1080/15592324.2023.2215025
Hussain, M., Waqas-ul-Haq, M., Farooq, S., Jabran, K., & Farroq, M. 2016. The impact of seed priming and row spacing on the productivity of different cultivars of irrigated wheat under early season drought. Experimental Agriculture, 52(3), 477-490. DOI: 10.1017/S0014479716000053
Hussain, S., Rao, M. J., Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., Ahmad, N., & Ahmad, S. 2019. Oxidative stress and antioxidant defense in plants under drought conditions. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 207-219. DOI: link.springer.com/chapter/10.1007/978-3-030-06118-0_9
 
Ighodaro, O. M., & Akinloye, O. A. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293. https://doi.org/10.1016/j.ajme.2017.09.001
Irigoyen, J. J., Einerich, D. W., & Sánchez‐Díaz, M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1), 55-60. DOI: org/10.1111/j.1399-3054.1992.tb08764.x
Irshad, M., Ullah, F., Fahad, S., Mehmood, S., Khan, A. U., Brtnicky, M., Kintl, A., Holatko, J., Irshad, I., El-Sharnouby, M., & El Sabagh, A. 2021. Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biology, 21(1), p.303. DOI: 10.1186/s12870-021-03097-0
Kameli, A., & Losel, D. M. 1993. Carbohydrates and water status in wheat plants under water stress. New Phytolology, 125, 609-614. DOI: 10.1111/j.1469-8137.1993.tb03910.x
Kataria, S., Jajoo, A., & Guruprasad, K. N. 2014. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. Journal of Photochemistry and Photobiology B: Biology, 137, 55-66. DOI: 10.1016/j.jphotobiol.2014.02.004
Kaur, S., Samota, M. K., Choudhary, M., Choudhary, M., Pandey, A. K., Sharma, A., & Thakur, J. 2022. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions? Physiology and Molecular Biology of Plants, 28(2), 485-504. DOI: 10.1007/s12298-022-01146-y
Kazemi, H., 2007. Agronomy. Centeral Press of University. p315. [In Persian].
Khan, M. N., Zhang, J., Luo, T., Liu, J., Ni, F., Rizwan, M., Fahad, S., & Hu, L. 2019. Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiologiae Plantarum, 41, 1-13. DOI: link.springer.com/article/10.1007/s11738-019-2812-2
Kumar, S., Abedin, M. M., Singh, A. K., & Das, S. 2020. Role of phenolic compounds in plant-defensive mechanisms. Plant Phenolics in Sustainable Agriculture, 1, 517-532. DOI: link.springer.com/chapter/10.1007/978-981-15-4890-1-22
Kusvuran, S., Kiran, S., & Ellialtioglu, S. S. 2016. Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. Abiotic and Biotic Stress in Plants-recent Advances and Future Perspectives, 481-506. https://www.intechopen.com/chapters/49852
Lao Arenas, M.T., Garcia Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., & Altay, V. 2020. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. DOI: 10.1007/s12229-020-09231-1
Lichtenthaler, H. K., & Wellburn, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 591-592. DOI: 10.1042/BST0110591
Lopes, M. S., & Reynolds, M. P. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63(10), 3789-3798. DOI: 10.1093/jxb/ers071
Ma, J., Lv, C., Xu, M., Chen, G., Lv, C., & Gao, Z. 2016. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environmental Science and Pollution Research, 23, 1768-1778. DOI: 10.1007/s11356-015-5439-x
Marček, T., Hamow, K. A., Végh, B., Janda, T., & Darko, E. 2019. Metabolic response to drought in six winter wheat genotypes. PLoS one, 14(2), p.e0212411. DOI: org/10.1371/journal.pone.0212411
Marchiosi, R., dos Santos, W. D., Constantin, R. P., de Lima, R. B., Soares, A. R., Finger-Teixeira, A., Mota, T. R., de Oliveira, D. M., Foletto-Felipe, M. D. P., Abrahão, J., & Ferrarese-Filho, O. 2020. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochemistry Reviews, 19, 865-906. DOI: 10.1007/s11101-020-09689-2
Naderi Zarnaghi, R., & Valizadeh, M. 2014. Investigation the activity of Glutathione Reductase and Ascorbate Peroxidase enzymes in wheat genotypes under drought tension in flowering stage. Crop Physiology jJournal, 6(23), 85-97. DOI: magiran.com/p1631627 
Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., Khan, F. A., & Naushin, F. 2019. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. Plant Signaling Molecules, 157-168. DOI:10.1016/B978-0-12-816451-8.00009-5
Naseer, I., Javad, S., Singh, A., Maqsood, S., Iqbal, S., & Jabeen, K. 2022. Alleviation mechanism of drought stress in plants using metal nanoparticles–a perspective analysis. In Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance (pp. 115-149). Cham: Springer International Publishing. DOI: 10.1007/978-3-030-86876-5_5
Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. 2013. Drought tolerance in wheat. The Scientific World Journal, 2013. DOI: 10.1155/2013/610721
Nyaupane, S., Poudel, M. R., Panthi, B., Dhakal, A., Paudel, H. and Bhandari, R. 2024. Drought stress effect, tolerance, and management in wheat–a review. Cogent Food & Agriculture, 10(1), p.2296094.
Oku, S., Ueno, K., Tsuruta, Y., Jitsuyama, Y., Suzuki, T., Onodera, S., Maeda, T., & Shimura, H. 2019. Sugar accumulation and activities of enzymes involved in fructan dynamics from seedling to bulb formation in onion (Allium cepa L.). Scientia Horticulturae, 247, 147-155. DOI: 10.1016/j.scienta.2018.12.013
Ozturk, M., Turkyilmaz Unal, B., García‐Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. 2021. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 172(2), 1321-1335. DOI: 10.1111/ppl.13297
Qi, M., Liu, X., Li, Y., Song, H., Yin, Z., Zhang, F., He, Q., Xu, Z., & Zhou, G. 2021. Photosynthetic resistance and resilience under drought, flooding and rewatering in maize plants. Photosynthesis Research, 148, 1-15. DOI:link.springer.com/article/10.1007/s11120-021-00825-3
Rajput, V. D., Harish, Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., Meena, M., Gour, V. S., Minkina, T., Sushkova, S., & Mandzhieva, S. 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10(4), p.267. DOI: 10.1080/07388551.2021.1874280
Razi, K., & Muneer, S. 2021. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 41(5), 669-691.
Rijal, B., Baduwal, P., Chaudhary, M., Chapagain, S., Khanal, S., Khanal, S., & Poudel, P.B. 2021. Drought stress impacts on wheat and its resistance mechanisms. Malaysian Journal of Sustainable Agriculture, 5, 67-76. DOI: 10.26480/mjsa.02.2021.67.76
Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. 2021. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), p.277. DOI:org/10.3390/antiox10020277
Salehi-Lisar, S.Y., & Bakhshayeshan-Agdam, H. 2016. Drought stress in plants: causes, consequences, and tolerance. Drought stress tolerance in plants, Vol 1: physiology and biochemistry, 1-16. DOI://link.springer.com/chapter/10.1007/978-3-319-28899-4_1
Sallam, A., Alqudah, A. M., Dawood, M. F., Baenziger, P. S., & Börner, A. 2019. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. International Journal of Molecular Sciences, 20(13), p.3137. DOI: 10.3390/ijms20133137
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Turgay D, Hafiz Haleem A.W., & Battaglia, M. L. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. DOI: 10.3390/plants10020259
Selim, D. A. F. H., Nassar, R. M. A., Boghdady, M. S., & Bonfill, M. 2019. Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiology and Biochemistry, 135, 480-488. DOI: 10.1016/j.plaphy.2018.11.012
Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A.S., Handa, N., Kapoor, D., Yadav, P., Khanna, K., & Bakshi, P. 2020. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 39, 509-531. DOI: 10.1007/s00344-019-10018-x
Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), p.2452. DOI: 10.3390/molecules24132452
Tefera, A., Kebede, M., Tadesse, K., & Getahun, T. 2021. Morphological, physiological, and biochemical characterization of drought-tolerant wheat (Triticum spp.) varieties. International Journal of Agronomy, 2021, 1-12. DOI:.org/10.1155/2021/8811749
Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. 2022. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11(13), p.1620. DOI: 10.3390/plants11131620
Yamaguchi, K., Mori, H., & Nishimura, M. 1995. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant and Cell Physiology, 36(6), 1157-1162. DOI: 10.1093/oxfordjournals.pcp.a078862
Yu, T. F., Xu, Z. S., Guo, J. K., Wang, Y. X., Abernathy, B., Fu, J. D., Chen, X., Zhou, Y. B., Chen, M., Ye, X. G., & Ma, Y. Z. 2017. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific reports, 7(1), p.44050. DOI: 10.1038/srep44050
Zhang, Y., & Zhang, Y. 2013. Biological role of ascorbate in plants. Ascorbic acid in plants: biosynthesis, regulation and enhancement, 7-33. DOI://link.springer.com/chapter/10.1007/978-1-4614-4127-4_2
Zhang, Y. B., Yang, S. L., Dao, J. M., Deng, J., Shahzad, A. N., Fan, X., Li, R. D., Quan, Y. J., Bukhari, S. A. H., & Zeng, Z. H. 2020. Drought-induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS One, 15(7), p.e0235845. DOI: 10.1371/journal.pone.0235845
Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., & Imran, A. 2021. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242, p.126626. DOI: 10.1016/j.micres.2020.126626
Zulkiffal, M., Ahsan, A., Ahmed, J., Musa, M., Kanwal, A., Saleem, M., Anwar, J., ur Rehman, A., Ajmal, S., Gulnaz, S., & Javaid, M.M. 2021. Heat and drought stresses in wheat (Triticum aestivum L.): substantial yield losses, practical achievements, improvement approaches, and adaptive Mechanisms. Plant Stress Physiology, 3. DOI: 10.5772/intechopen.92378