ارزیابی بیان ژنهای TaWRKY10 ، TaWRKY53،NAC2 و برخی صفات بیوشیمیایی و آنزیمی تحت تنش شوری در ارقام گندم نان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد ژنتیک و به نژادی گیاهی ، گروه اصلاح نباتات و بیوتکنولوژی دانشگاه منابع طبیعی و علوم کشاورزی گرگان، گرگان، گلستان، ایران.

2 استاد گروه اصلاح نباتات و بیوتکنولوژی دانشگاه منابع طبیعی و علوم کشاورزی گرگان، گرگان، گلستان، ایران.

3 دانش‌آموخته دکتری، گروه اصلاح نباتات و بیوتکنولوژی دانشگاه منابع طبیعی و علوم کشاورزی گرگان، گرگان، گلستان، ایران.

چکیده

مقدمه: تنش شوری یکی از محدودکننده­ترین عامل غیرزنده در تولید گندم است، برای غلبه بر این مشکل با شناخت نحوه پاسخ و عمل ژن­ها در تنش می­توان اطلاعات مفیدی برای اصلاح گیاهان به­منظور تحمل تنش­های محیطی فراهم کرد. واکنش بیوشیمیایی و مولکولی گندم به تنش شوری بسیار متنوع است. با توجه به نقش مؤثرخانواده مهم عوامل رونویسیNAC و WRKY در تقابل با تنش­ها، در این پژوهش میزان بیان سه ژن مهم این خانواده­ها شامل TaWRKY10 و TaWRKY53  وNAC2  و هم­چنین میزان محتوای کلروفیل، مالون­دی­آلدئید، آنزیم­های کاتالاز و پلی­فنل ­اکسیداز در ارقام گندم نان (کلاته، بهاران و گنبد) مورد ارزیابی قرار گرفتند.
مواد و روش‌ها: آزمایش به‌صورت کرت­های خرد شده در قالب طرح بلوک کامل تصادفی با چهار تکرار در شرایط گلخانه انجام شد. عامل اصلی، تیمار شوری (شاهد، 9 و 12 دسی­زیمنس) با اعمال آب آبیاری پس از جوانه زنی و استقرار گیاهان اعمال شد. عامل فرعی سه رقم گندم (کلاته، گنبد و بهاران ) بود. نمونه­بردای جهت ارزیابی بیان ژن و صفات بیوشیمیایی انجام شد. جهت بررسی بیان ژن‌ها تکنیک Real Time PCR مورد استفاده قرار گرفت.
یافته‌ها: در هر سه رقم با افزایش میزان شوری از میزان محتوای کلروفیل کاسته شد، بیشترین میزان کلروفیل a و  b به ترتیب با (5/14 و 2/18میلی­گرم بر گرم وزن تر) در تیمار شاهد رقم کلاته مشاهده گردید. در هر سه رقم با افزایش میزان شوری نسبت به شاهد میزان آنزیم­های کاتالاز و پلی­فنل­اکسیداز و هم­چنین بیان ژن­های مورد بررسی (TaWRKY10 ، TaWRKY53  وNAC2) افزایش یافت. بیشترین میزان آنزیم­ها در تیمار شوری 12 دسی­زیمنس شوری رقم کلاته مشاهده شد. بیشترین میزان مالون دی­آلدئید 31 میکرومول بر گرم وزن تر در رقم بهاران تحت تنش شوری 12 دسی­زیمنس مشاهده شد که تخریب بیشتر غشای سلولی این رقم را نشان می­دهد. بر اساس نتایج حاصل از رقم کلاته با این پژوهش متحمل بودن بیشتر رقم کلاته به تنش شوری نسبت به دو رقم بهاران و گنبد را تأیید کرد.
نتیجه‌گیری: در بهبود و اصلاح گیاهان در مقاومت به شوری فاکتورهای رونویسی نقش مهمی دارند. نتایج این تحقیق در راستای تأیید نقش فاکتورهای رونویسی در مقاومت به شوری مورد توجه است و در ایجاد و معرفی ارقام گندم متحمل می­تواند به کار گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the expression of TaWRKY10, TaWRKY53, NAC2 genes and some biochemical and enzymatic traits under salt stress in bread wheat cultivars

نویسندگان [English]

  • hanifeh bahlakeh 1
  • saeid navabpour 2
  • mostafah hamidi 3
1 Master's student in genetics and plant breeding, Department of Plant Breeding and Biotechnology, Gorgan University of Natural Resources and Agricultural Sciences, Gorgan, Golestan, Iran.
2 Professor of Plant Breeding and Biotechnology Department of Gorgan University of Natural Resources and Agricultural Sciences, Gorgan, Golestan, Iran.
3 PhD student, Department of Plant Breeding and Biotechnology, Gorgan University of Natural Resources and Agricultural Sciences, Gorgan, Golestan, Iran.
چکیده [English]

Introduction: Salinity stress is one of the most limiting non-living factors in wheat production. To overcome this problem, helpful information can be provided by understanding how genes respond and act in stress, to help plants withstand environmental stress. The biochemical and molecular response of wheat to salinity stress is diverse. Considering the effective role of the important family of transcription factors NAC and WRKY in dealing with stresses, this study evaluated the expression levels of three important genes from these families, TaWRKY10, TaWRKY53, and NAC2, as well as the content of chlorophyll, malondialdehyde, catalase, and polyphenol oxidase enzymes in bread wheat cultivars (Kalateh, Baharan, and Gonbad).
Materials and methods: The experiment was conducted in a randomized complete block design with four replications in greenhouse conditions. The main factor was salinity treatment (control, 9 and 12 deci-siemens) applied through irrigation after germination and plant establishment. The secondary factor was wheat varieties (Kalate, Gonbad, and Baharan). Sampling was performed to evaluate gene expression and biochemical traits. Real-Time PCR technique was used to check gene expression.
Results: In all tested cultivars, the chlorophyll content decreased with increasing salinity. The highest amounts of chlorophyll a and b were observed in the control treatment of the Kalate variety (14.5 and 18.2 mg/g fresh weight, respectively). Catalase and polyphenol oxidase enzymes, as well as the expression of TaWRKY10, TaWRKY53, and NAC2 genes, increased with salinity compared to the control in all three cultivars. The highest enzyme levels were observed in 12 deci-siemens salinity treatment of the Kalateh variety. The highest malondialdehyde amount (31 μmol/g fresh weight) was observed in the Baharan cultivar under 12 deci-siemens salt stress, indicating greater cell membrane damage in this cultivar. Based on the results, the Kalateh variety showed greater tolerance to salt stress compared to Baharan and Gonbad varieties.
Conclusion: Transcription factors play a crucial role in enhancing plant resistance to salinity. The results of this study confirm the role of transcription factors in salinity resistance and could be utilized in developing and introducing tolerant wheat cultivars.

کلیدواژه‌ها [English]

  • gene expression
  • catalase
  • chlorophyll
  • bread wheat
  • salt
Abdelaziz, M., Xuan, T., Mekawy, A., Wang, H., & Khanh, T. 2018. Relationship of Salinity Tolerance to Na+ Exclusion, Proline Accumulation, and Antioxidant Enzyme Activity in Rice Seedlings. Agriculture, 8(11), 166. https://doi. org/10.3390/agriculture8110166.
Al-Tawaha A.R., Samarah, N., & Ranga, A.D. 2021. Soil Salinity and Climate Change. In: Sustainable soil and land management and climate change. CRC Press, UK, 83-93. https://doi. 10.1201/9781003108894.
Amini, A., Amirnia, R., & Gazvini, H. 2016. Evaluation of the relationship between physiological and agronomic traits related to salinity tolerance in bread Wheat (Triticum aestivum L.) genotypes. Iranian Journal of Crop Sciences, 17(4): 329-348. [In Persian].
Ashwini, N., Sajeevan, R. S., Udayakumar, M., & Nataraja, K. N. 2016. Identification and characterization of OsWRKY72 variant in indica genotypes. Rice Science, 23(6), 297-305. https://doi. 10.1016/j.rsci.2016.07.002.
Askari Kolestani, A., R., Ramadanpour, S., S., Barzoui, A., Sultanlou, H. & Nawabpour, S. 2016. Study of biochemical and molecular changes of salt tolerance in bread wheat lines (Triticum aestivum L.) irradiated with gamma rays. PhD thesis, Gorgan University of Agriculture and Natural Resources.(petion).
Apel, K., &  Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Plant Biology, 55:373-399. https://doi. 10.1146/annual.arplant.55.031903.141701.
Baillo, E. H., Hanif, M. S., Guo, Y., Zhang, Z., Xu, P., & Algam, S. A. 2020. Genome-wide Identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench). PloS one, 15(8), e0236651.  https://doi.10.1371.
Bandeoglu, E., F. Eyidogan, M. Yucel. & H.A. Oktem. 2004. Antioxidant response of shoots and roots of lentil to NaCl Salinity stress. Plant Growth Regulation. 42:69-77. https://doi.10.1023/B:GROW.0000014891.35427.7b
Bartles, D., & Sunkar., R. 2015. Drought and salt tolerance in plants. Plant Science, 24: 23-58. https://doi.10.1080/07352680590910410.
Chen, L., Song,Y., Li, S., Zhang, L., Zou,C. & Yu., D.. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochimica Biophysica Acta (BBA) -Gene Regulatory Mechanisms, 18: 120 -128. https://doi.10.1016/j.bbagrm.2011.09.002.
Ghasemi Mosremi, A., Selouki, M., Golkari,S., Mahdinejad, N., Fakheri, B.A., Ghalaji, M. H., & Jabari, M. 2022. Comparison of photosystem II performance in native Iranian wheat genotypes using chlorophyll fluorescence parameters under salinity stress, production, and Plant Genetics, (1)3 67-84. (in Persian). https://doi.10.34785/J020.2022.154
Gholizadeh, D., Amini, A., & Akbarpour, O. A. 2016. Investigating the genetic diversity of Iranian bread wheat germplasms in terms of tolerance to salt stress. Agricultural Plant Breeding Journal, 10(26), 173-184. (In Persian). https://doi.10.29252/jcb.10.26.173.
Gonzalez, E.M., Ancos, B., & Cano, M.P. 1999. Partial characterization of polyphenol oxidase activity in raspberry fruits. Journal of Agricultural and Food Chemistry, 47: 4068 -4072. https://doi.10.1021/jf000169w.
Gunes, A., Inal, A., Alpuslan, M., Fraslan, F., Guneri, E., & Cicek., N. 2007. Salicylic acid induced changes in some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize grown under salinity. Journal of Plant Physiology, 164: 728-736. https://doi.10.1016/j.jplph.2005.12.009.
Guo, Z., Ou, W., Lu, S., & Zhong, Q. 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, 44(11): 828–836. . https://doi.10.1016/j.plaphy.2006.10.024.
Hagege, D., Nouvelot, A., Boucard, J. & Gaspar, T. 1990. Malondialdehyde titration with thiobarbiturate in plant extracts: avoidance of pigment interference. Phytochem Anal, 1: 86-89. https://doi.org/10.24200/nst.2019.236.
Han, D., , Du, M., Zhou, Z., Wang, S., Li, T., Han, J., Xu, T., & Yang ,G . 2022. Overexpression of a Malus baccata NAC Transcription Factor Gene MbNAC25 Increases Cold and Salinity Tolerance in Arabidopsis. Int J Mol Sci, 21(4), 1198. https://doi. 10.3390/ijms21041198.
Hnilickova, H., Kraus, K., Vachova, P., & Hnilicka, F. 2021. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants (Basel), 10, 845. 10.3390/plants10050845.
Huang, Q., Y. Wang, B. Li, J. Chang, M. Chen, K. Li, G.Yang, & G. He. 2015. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis, BMC Plant Biology, 15: 268. https://doi.10.1186/s12870-015-0644-9
Ishihama, N. Yoshioka, H. 2012. Post-translational regulation of WRKY transcription factors in plant immunity. Plant Biology,15: 431-437. https://doi. 10.1016/j.pbi.2012.02.003
Jia, S., Lv, J., Jiang, S., Liang ,T., Liu, C., & Jing, Z. 2015. Response of wheat ear photosynthesis and photosynthate carbon distribution to water deficit. Photosynthetica, 53(1): 95-109. https://doi. 10.1007/s11099-015-0087-4.
Kamyab, S.,  Alami -Saeid, Kh., Eslahi, M.R., & Moradi, M. 2022. Key Genes Involved in Wheat Response to Salinity Stress and Mapping their Gene Network. Journal of Crop Breeding, 14(43),201-207. https://doi.10.52547/jcb.14.43.201
Khanzadeh, P. 2017. Effects of seed inoculation by cycocel and biofertilizers on grain filling period in various levels of soil salinity. MSc thesis, Mohaghegh Ardabili University, Ardabil, Iran (In Persian).
Kiani, D., Soltanloo, H., Ramezanpour, S.S., Qumi, A.A.N., Yamchi, A., Nezhad, K.Z. & Tavakol, E. 2017. A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta physiologiae plantarum, 39(3), p.90. doi:10.1007/s11738-017-2359-z.
Liu, E.K., Mei, X.R., Yan, C.R., Gong, D.Z., & Zhang, Y.Q. 2016. Effects of water stress on photosynthetic characteristics, dry matter translocation, and WUE in two winter wheat genotypes. Agricultural Water Management, 167: 75-85. https://doi.org/10.1016/j.agwat.2015.12.026
Miao, Y. Zentgraf, U. 2010. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant Journal, 63(2):179-188. https://doi. 10.1111/j.1365-313X.2010.04233.x
Moharramnejad, S. & Valizadeh, M. 2015. Variation of pigment content and antioxidant enzyme activities in pinto bean (Phaseolus vulgaris L.) seedlings under salt stress. Journal of Crop Ecophysiology 9: 153 -166 (In Persian).
Moloudi, F., Navabpour, S., Soltanloo, H., Ramezanpour, S.S., & Sadeghipour, H.(2013). Catalase and metallothionein gene expression analysis in wheat cultivars under drought stress conditions. Journal of Plant Molecular Breeding. 1(2), 58-64. https://doi. 10.22058/JPMB.2013.3262.
Moore, J.W., Loake G.J., & Spoel, S.H. 2011 .Transcription dynamics in plant immunity. Plant Cell, 23: 2809-2820. https://doi. 10.1105/tpc.111.087346.
Munns, R., James, R. A., Gilliham, M., Flowers, T. J., & Colmer, T. D. 2016. Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Functional Plant Biology, 43(12), 1103-1113. https://doi.org/10.1071/FP16187.
Nabiollahi, K., Taghizadeh -Mehrjardi, R., Kerry, R. & Moradian, S. 2017. Assessment of soil quality indices for salt - affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83: 482 -494. (In Persian).
Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K. & Yamaguchi-shinozaki, K. 2012. NAC transcription factors in plant abiotic stress responses. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, Vol. 26, No.1, 2018. https://doi. 10.1016/j.bbagrm.2011.10.005.
Price, R. M., Budzyński, M. A., Shen, J., Mitchell, J. E., Kwan, J. Z., & Teves, S. S. 2023. Heat shock transcription factors demonstrate a distinct mode of interaction with mitotic chromosomes. Nucleic acids research, 51(10), 5040-5055. https://doi.org/10.1093/nar/gkad304.
Porra, R.J., Thompson , W.A., & Kriedmann, P.E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: vertification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta, 975:384-394. https://doi.org/10.1016/S0005-2728(89)80347-0.
Rahaie, M., Gomarian, M., Alizadeh, H., Malboobi, M.A. & Naghavi, M.R. 2011. The expression analysis of transcription factors under long term salt stress in tolerant and susceptible wheat (Triticum aestivum L.) genotypes using Reverse Northern Blot. Iranian Journal of Crop Science, 3(51): 580-595. (in Persian).
Reynolds, M.P., A. Mujeeb‐Kazi, & M. Sawkins. 2005. Prospects for utilising plant‐adaptive mechanisms to improve wheat and other crops in drought‐and salinity‐prone environments. Annals of Applied Biology,146(2): 239-259. https://doi.org/10.1111/j.1744-7348.2005.040058.x
Rushton, P. J., Somssich, I.E., Ringler, P. & Shen, Q.J. 2010. WRKY transcription factors. Trends in Plant Science, 15: 247 -258. https://doi. 10.4161/psb.27700
Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., & Sarwar, M.I. 2019. A review: Impact of salinity on plant growth. Nat. Sci, 17(1): 34-40. https://doi.10.7537/marsnsj170119.06.
Sharma, P., Jha, A.B., Dubey, R.S., & Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. https://doi.org/10.1155/2012/217037.
Sreenivasulu, N., Grimm, B., Wobns, U., & Weschke, W. 2000. DifferentialDifferential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedling of foxtail millet. Physiology Plantarum, 109: 435-442. https://doi.10.1034/j.1399-3054.2000.100410.x
Sun, Y., & Yu, D. 2015. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. Plant Cell Reports, 34: 1295-1306. https://doi.10.1007/s00299-015-1787-8
Torabi, A. & Farzami Sepehr, M. 2015. The effect of salt pretreated Glomus fasciculationfasciculation salinity tolerance induction of barley plants. Iranian Journal of Plant Physiology, 5: 1323 -1331. (in Persian).
Wang, C. Deng, P., Chen, L. Wang, X. Ma, H. Hu, W. Yao, N. Feng, Y. Chai, R. Yang, G. & He, G. 2013. A Wheat WRKY Transcription Factor TaWRKY10 Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco, PLoS ONE. 8(6):1356-1371.https://doi.10.1371/journal.pone.0065120
Wei, L., Wang, L., Yang, Y., Wang, P., Guo, T. & Kang ,G. 2015. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis, Frontiers in Plant Science. 6(20):1-11. https://doi.org/10.3389/fpls.2015.00458
You, J. & Z. Chan. 2015. Protein kinases and ROS regulation during abiotic stress response in crop plant. Plant Science, 176(5): 669-677. https://doi.org/10.3389/fpls.2015.01092
Zheng, X., Chen, B., Lu,  G., & Han, B.  2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 379(4), 985-989. https://doi.10.1016/j.bbrc.2008.12.163
Zhong, L., Xu, Y. & Wang, J.  2009. DNA-methylation changes induced by salt stress in wheat Triticum aestivum. African Journal of Biotechnology,8(22): 6201-6207. https://doi. 10.5897/AJB09.1058
Zhou, Q.Y. Tian, A. G. Zou, H. F, Xie, Z. M. Lei, G. Huang, J. Wang, C. M. Wang, H. W Zhang, J. S. & Chen, S. Y. 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6(5):486- 503. https://doi. 10.1111/j.1467-7652.2008.00336.x