پیش‌بینی پاسخ به کشت جنین بالغ گندم دوروم از طریق صفات زراعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران.

2 مرکز تحقیقات غلات، دانشگاه رازی، کرمانشاه، ایران.

چکیده

مقدمه: تکثیر درون شیشه‌ای از مزایا و پتانسیل‌های زیادی برخوردار می‌باشد که از مهم‌ترین آنها، می‌توان به تکثیر گیاهان یکنواخت و عاری از پاتوژن در یک زمان کوتاه و در مقیاس بسیار وسیع اشاره کرد. انتخاب ریزنمونه در مرحله رشد مطلوب نقش اساسی در موفقیت آمیز بودن کشت بافت در شرایط درون شیشه‌ای بازی می‌کند. تکثیر مؤثر گیاهان با کشت بافت می‌تواند به کلون‌سازی ژنوتیپ‌های مطلوب کمک کند و در کوتاه مدت برای تکثیر تجاری ژنوتیپ‌ها استفاده شود. تولید کالوس از طریق کشت جنین بالغ امکان باززایی مؤثری را برای بسیاری از گیاهان در شرایط کشت بافت فراهم می‌کند. انتخاب بر اساس صفات زراعی می‌تواند به‌عنوان روشی مناسب برای پیش‌بینی نتایج کشت بافت که یک روش پر هزینه و زمان‌بر است مورد استفاده قرار گیرد. بنابراین پژوهش حاضر در راستای بررسی ارتباط صفات زراعی گندم دوروم با ویژگی‌های مرتبط با القا و رشد کالوس حاصل از جنین بالغ انجام گرفت.
مواد و روش‌ها: به منظور ارزیابی صفات زراعی، 20 ژنوتیپ گندم دوروم شامل 19 لاین پیشرفته و رقم زردک در دو سال زراعی متوالی (1384-1385 و 1386-1385) در قالب طرح بلوک‌های کامل تصادفی با سه تکرار کشت شدند. پاسخ به کشت جنین بالغ ژنوتیپ های مذکور در مرحله القاء کالوسدر قالب طرح کاملاً تصادفی با هفت تکرار انجام شد.
یافته‌ها: جدول تجزیه واریانس نشان داد که بین ژنوتیپ‌های مورد مطالعه از نظر درصد القای کالوس و سرعت نسبی رشد کالوس اختلاف بسیار معنی‌دار بود. جدول تجزیه واریانس مرکب برای صفات زراعی اندازه‌گیری شده بر روی 20 ژنوتیپ گندم دوروم نشان داد که بین ژنوتیپ‌های مورد مطالعه از نظر صفات اندازه‌گیری شده اختلاف بسیار معنی‌دار وجود داشت. نتایج تجزیه علیت نشان داد که صفات طول پدانکل، تعداد دانه در سنبله و تعداد سنبله در بوته بیشترین اثر مستقیم و مثبت، ارتفاع و طول پدانکل به ارتفاع بیشترین اثر مستقیم منفی و طول سنبله کمترین اثر مستقیم را بر درصد القای کالوس داشتند. همچنین صفات طول پدانکل به ارتفاع و تراکم سنبله بیشترین اثر مستقیم مثبت و طول پدانکل و عملکرد دانه بیشترین اثر مستقیم و منفی و تعداد سنبله در بوته کمترین اثر مستقیم را بر روی سرعت نسبی رشد کالوس نشان دادند. بر اساس نتایج تجزیه کانونیک گیاهانی که تعداد دانه در سنبله بیشتری داشتند (ژنوتیپ‌های با کد 11، 12، 14 و 20) از درصد القاء کالوس و سرعت رشد نسبی کالوس بالاتری هم برخوردار هستند. با این وجود نتایج آزمون منتل حاکی از عدم  همبستگی معنی‌دار بین ماتریس‌های تشابه به‌دست آمده از داده‌های کشت بافتی و زراعی بود.
نتیجه‌گیری: این نتایج می‌تواند بر کنترل ژنتیکی و امکان غربال مستقیم ارقام دارای صفات کشت بافتی مناسب از طریق این صفات زراعی که انتخاب آن‌ها ساده و سریع است، دلالت داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting response to mature embryo culture of durum wheat via agronomic traits

نویسندگان [English]

  • Sina Ghanbari 1
  • kianoosh cheghamirza 1 2
  • Leila Zarei 1 2
1 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
2 Department of Plant Production and Genetics, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.|Cereal Research Center, Razi University, Kermanshah, Iran.
چکیده [English]

Introduction: The tissue culture technique and in vitro propagation have many advantages and potentials compared to the classical methods of vegetative propagation of plants, the most important of which is the propagation of uniform and pathogen-free plants in a short time and on a large scale. Choosing an explant at the optimal growth stage plays a key role in the success of tissue culture in vitro. Effective propagation of plants by tissue culture can help to clone desirable genotypes and be used for commercial propagation of genotypes in the short term. Callus production through mature embryo culture allows many plants to regenerate effectively in tissue culture conditions. Selection based on an agronomic trait can be used as a suitable method to predict tissue culture results, which is costly and time-consuming.
Materials and methods: To evaluate agricultural traits, 20 durum wheat genotypes, including 19 advanced lines and the Zardak variety, were cultivated for two years based on a randomized complete block design with three replications. The response to the mature embryo culture of 20 durum wheat genotypes was made in the callus induction stage in a completely randomized design with seven replicates and ten mature embryo samples in each replicate.
Results: The analysis of variance showed a significant difference between the studied genotypes regarding the percentage of callus induction and the relative speed of callus growth. The combined variance analysis table for agronomic traits measured on 20 durum wheat genotypes showed a significant difference between the studied and measured traits. The results of path analysis showed that peduncle length, number of seeds per spike, and number of spikes per plant had the most direct and positive effect, height and peduncle length had the most negative direct effect, and spike length had the least direct effect on callus induction percentage. Also, peduncle length to height ratio and spike density showed the most positive direct effect, peduncle length, and grain yield had the most direct and negative effect, and the number of spikes per plant showed the least direct effect on the relative speed of callus growth. According to the results of canonical analysis, the plants with more grains per spike have higher callus induction percentages and relative callus growth rates. Nevertheless, Mantel test results showed no significant correlation between similarity matrices obtained from tissue culture and agricultural data.
Conclusion: These results indicate the genetic control and the possibility of direct screening of genotypes with appropriate tissue culture traits through these correlated agronomic traits that are easy and quick to select.

کلیدواژه‌ها [English]

  • Keywords: Callus induction
  • Canonical correlation
  • Durum wheat
  • Path analysis
  • Tissue culture
  • Triticum turgidum
Abbasi, M. & Mohammadi, R. (2023). Response of durum wheat mature embryo to callus induction and salt stress in vitro condition. Cereal Biotechnology and Biochemistry, 2(2), 190-208.
Abumhadi, N., Kamenarova, K., Todorovska, E., Dimov, G., Trifonova, A., Gecheff, K., & Atanassov, A. 2005. Callus induction and plant regeneration from barley mature embryos (Hordeum vulgare L.). Biotechnology and Biotechnology Equipment, 19 (3), 32-38.
Agarwal, M. 2015. Tissue culture of (Momordica charantia L). A review. Journal Plant Science, 3, 24-32.
Ahmadi, S., Fayyaz, F., Mohammad Naji, A., & Aghaei Sarbarzeh, M. 2022. Association analysis of some morphological traits of durum wheat (Triticum turgidum var. Durum Desf) in rainfed and supplementary irrigation conditions using SSR molecular marker. Cereal Biotechnology and Biochemistry, 1 (1), 35-50. doi: 10.22126/cbb.2022.1951.
Akbari, L., Cheghamirza, K., & Farshadfar, E. 2023. Investigation Callus Induction and Regeneration via Immature Embryo Culture to in vitro in Durum Wheat. Cereal Biotechnology and Biochemistry, 2 (2), 209-220.
Barz, W., Reinhard, E., & Zenk, M. 2012. Plant Tissue Culture and Its Bio-technological Application Proceedings of the First International Congress on Medicinal Plant Research, Section B, Held at the University of Munich, Germany September 6–10, 1976.
Bavandpouri, F., Farshadfar, E., Chegamirza, K., Farshadfar, M., & Bihamta, M. R. 2023. Studying the relationship between traits obtained from callus induction in the mature embryo stage and agronomic traits of bread wheat in different moisture conditions. Crop Biotechnology, 12(42), 17-35.
Bednarek, P. T., & Orłowska, R. 2020. Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell, Tissue and Organ Culture, 140, 245-257.
Benlioğlu, B., Koçak, N., & Avci Birsin, M. 2020. Response of some durum wheat (Triticum durum Desf.) genotypes on tissue culture parameters. Mediterranean Agricultural Sciences, 33 (1), 123-128.
Bregitzer, P., & Campbell. R. D. 2001. Genetic markers associated with green and albino plant regeneration from embryogenic barley. Crop Science, 41, 173-179.
Chen, J. Y., Yue, R. Q., Xu, H. X., & Chen, X. J. 2006. Study on plant regeneration of wheat mature embryos under endosperm supported culture. Agricultureal Science in China, 5, 572-578.
Dodig, D., Zoric, M., Mitic, N., Nikolic, R., & Surlan-Momirovic, G. 2008. Tissue culture and agronomic traits relationship in wheat. Plant Cell Tissue Organ Culture, 95, 107-114.
Erkoyuncu, M. T., & M. Yorgancilar. 2016. Efficient callus induction and plantlets regeneration from mature embryo Culture of barley (Hordeum vulgare L.). Genotypes, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 10(6).
FAO. 2022. OECD-FAO Agricultural Outlook 2022–2031; OECD: Paris, France.
Farshadfar, A. 2018. Genetic modification of environmental stresses. Vosough Publications. First Edition, pp. 844.
Gholami, A. A., & Tarinejad, A. 2018. Callus induction and regeneration of bread wheat cultivars from Different explants, Journal of Cell & Tissue, 9(1), 37-56.
Goldin, A. 2001. Relation between aspect and plant distribution on calcareous soils near Missoula. Montana Northwest Science, 3, 197-203.
Hakam, N., Udupa, S. M., Rabha, A., Ibriz, M., & Iraq, D. 2015. Efficient callus induction and plantlets regeneration in bread wheat using immature and mature embryos. International Journal of Biotechnology Research, 3(1), 1-9.
Haliloglu, K., Ozturk, A., Tosun, M., & Bulut, S. 2005. Relationship between tissue culture and agronomic traits of winter wheat. Cereal Research Communications, 33 (2-3), 469-476.
Herrmann, M. 2007. A diallel analysis of various traits in winter triticale. Plant Breeding, 126, 19-23.    
Hess, J. R., & Carman, J. G. 1998. Embryogenic competence of immature wheat embryos: genotype, donor plant, environment and endogenous hormones levels. Crop Science, 38, 249-253.
Johnson, R. A., & Wichern, D. W. 2002. Applied multivariate statistical analysis. Prentice hall Upper Saddle River, New Jersey, USA, 5(8), 808.
Johnson, R. A., & Wichern, D. W. 2002. Applied Multivariate Statistical Analysis. Prentice-Hall,Upper Saddle River, NJ.
Li, W., Ding, C. H., Hu, Z., Lu, W., & Guo, G. Q. 2003. Relationship between tissue culture and agronomic traits of spring wheat. Plant Science, 164, 1079-1085.
Liu, H., Able, A. J., & Able, J. A. 2019. Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction. Scientific Report, 9, 14986.
Lorenceti, C., Felix de Carvalho, F.I., de Oliviera, A. C., Valerio, I. P., Hartwig, I., Benin, G., & Schmidt, D. A. M. 2006. Applicability of phenotypic and path coefficient in the selection of oat genotypes. Scientia Agricola, 63 (1), 11-19.
Martínez-Moreno, F., Solís, I., Noguero, D., Blanco, A., Ozberk, I., Nsarellah, N., Elias, E., Mylonas, I., & Soriano, J. M. 2020. Durum Wheat in the Mediterranean Rim: Historical Evolution and Genetic Resources. Genetic Resources and Crop Evolution, 67, 1415–1436.
Mobaseri Moghadam, M., Fakheri, B., Kamaladiny, H., Solouki, M., & Haddadi, F. 2023. Evaluation of the effect of growth regulators on the micropropagation process of medicinal plant (Momordica charantia), and identification of secondary compounds of different organs using GC-MS. Journal of Crop Science Research in Arid Regions, 4(2),533-546.
Murashige, T., & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. The Journal of Plant Physiology, 15, 473-497.
Naseri Myankali, R., Cheghamirza, K., Zarei, L., & Saroei, E. 2017b. Evaluation of relationship between the associated traits with callus induction of mature embryo and agronomic traits in different barley genotypes (Hordeum vulgare L.). Cereal Research, 7(3), 421-435.
Naseri, R., Cheghamirza, K., Zarei, L., & Saroei, E. 2017a. Induced dedifferentiation of barley (Hordeum vulgare L.) embryonic cells and its relationship with agronomic traits. Cellular and Molecular Biology, 63 (10), 11-19.
Ren, J., Wang, X., & Yın, J. 2010. Dicamba and Sugar Effects on Callus Induction and Plant Regeneration from Mature Embryo Culture of Wheat. Agriculture Science in China, 9(1), 31-37.
Shabbir, A., Hameed, N., Ali A., & Bajwa, R. 2009. Effect of different cultural conditions on microprapagation of Rose (Rosa indica L.) Pakistan Journal of Botany, 41, 2877-2882.
Sissons, M. 2022. Durum Wheat Products—Recent Advances. Foods, 11, 3660.
Sugandh, S. 2017. Plant tissue culture: a promising tool of quality material production with special reference to micropropagation of banana. Biochemical and cellular Archives, 17(1), 1-26.
Suleiman, A. A., Nganya, J. F., & Ashraf M. A. 2014. Correlation and path analysis of yield and yield components in some cultivars of wheat (Triticum aestivum L) in Khartoum State, Sudan. Journal of Forest Products and Industries, 3 (6), 221-228.
Tahmasebpour, B., Jahanbakhsh, S., Tarinejad, A., Mohammadi, H., & Ebadi, A. 2021. Canonical correlation analysis of phonological and other traits related to grain yield in different wheat genotypes under normal irrigation and stressed conditions at flowering time. Iranian Journal of Field Crop Science, 52 (2), 121-132.
Yu, G., Wang, J., Miao, L., Xi, M., Wang, Q., & Wang, K. 2019. Optimization of mature embryo-based tissue culture and Agrobacterium-mediated transformation in model grass Brachypodium distachyon, Internationl Journal of Molecular Science, 20(21), 5448.