بررسی اثر متقابل ژنوتیپ × محیط و برآورد پایداری عملکرد دانه ژنوتیپ‌های امیدبخش برنج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران.

2 دانشیار، مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران.

10.22126/cbb.2024.11230.1088

چکیده

مقدمه: برنج پس از گندم، مهم‌ترین غله در جهان است که بخش اعظمی از انرژی مورد نیاز جمعیت بشر را تأمین می‌کند و نقش مهمی در تغذیه جوامع انسانی دارد. بیشترین میزان تولید و مصرف برنج در دنیا مربوط به قاره آسیا است. برای مقابله با چالش‌های جمعیتی جهان و مقابله با اثرات تغییرات آب و هوایی، می‌توان تولید برنج را با ایجاد ارقام پرمحصول از طریق برنامه‌های به نژادی افزایش داد. اثرمتقابل ژنوتیپ و محیط در به‌نژادی محصولات و تولید آنها اجتناب ناپذیر است. در نظر گرفتن برهم‌کنش ژنوتیپ و محیط از طریق مدل‌های تجزیه و تحلیل پایداری می‌تواند مکان‌یابی دقیق ارقام در مناطق مختلف را تسهیل کند. لذا، این پژوهش به منظور ارزیابی پایداری عملکرد در شش لاین امیدبخش برنج و دو رقم شیرودی و هاشمی به عنوان شاهد اجرا شد.
مواد و روش‌ها: شش ژنوتیپ امیدبخش برنج و دو رقم شیرودی و هاشمی به عنوان شاهد، در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در دو منطقه (رشت و چپرسر) از سال 1394 به مدت سه سال، کشت و ارزیابی شدند. تجزیه واریانس مرکب با فرض تصادفی بودن سال‌ها و ثابت بودن مکان‌ها و ژنوتیپ‌ها و مقایسه میانگین‌ها به روش توکی انجام شد. با معنی‌دارشدن اثرمتقابل ژنوتیپ × محیط برای صفات مورد بررسی، تجزیه پایداری به روش‌های لین و بینز، AMMI  و GGEبای‌پلات انجام شد.
یافته‌ها: نتایج تجزیه مرکب نشان داد که اثرات ژنوتیپ‌، مکان، سال × مکان، ژنوتیپ × مکان و ژنوتیپ × سال × مکان معنی‌دار بود. نتایج تجزیه پایداری ژنوتیپ‌های برنج به روش لین و بینز نشان داد که ژنوتیپ‌های 19401 و 19403 دارای رتبه اول و دوم در پایداری عملکرد بودند. ارزیابی پارامترهای مدل AMMI نشان داد که ژنوتیپ‌های 19401، 19402، 19404 و 19403 به‌عنوان ژنوتیپ‌های پایدار با سازگاری عمومی بالا بودند. بر اساس آماره ASV و  عملکرد دانه، ژنوتیپ‌های 19401 و 19402 به عنوان پایدارترین ژنوتیپ‌ها انتخاب شدند. همچنین، نتایج حاصل از روش GGE بای‌‌پلات نشان داد که ژنوتیپ 19401 بیشترین پایداری را در بین ژنوتیپ‌های مورد بررسی داشت و از عملکرد دانه مناسبی برخوردار بود.
نتیجه‌گیری: در کل نتایج حاصل از ارزیابی پایداری لاین‌های امیدبخش برنج با استفاده از روش‌های لین و بینز، AMMI و GGEبای‌پلات نشان داد که ژنوتیپ 19401، پایدارترین لاین امید بخش بود که با میانگین تولید 3/6 تن در هکتار شلتوک در دو مکان و سه سال و بدون اختلاف معنی‌دار با رقم شاهد اصلاح شده شیرودی از ارقام پرمحصول محسوب شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the genotype × environment interaction and estimating the grain yield stability of rice promising genotypes

نویسندگان [English]

  • Hosein Rahim Soroush 1
  • Maryam Hoseini Chaleshtori 2
  • Alireza Haghighi Hasanalideh 1
1 Assistant Professor, Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
2 Associate Professor, Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
چکیده [English]

Introduction: After wheat, rice is the most important cereal in the world, providing a large portion of the calories needed by the human population and playing an important role in the nutrition of human societies. The world's largest rice production and consumption is in the Asian continent. Rice production must be increased through breeding programs that aim to achieve high-yielding varieties to face the challenges of the ever-increasing world population and climate change. The interaction of genotype and environment in crop breeding and production is inevitable. Considering the interaction of genotype and environment through stability analysis models can facilitate the accurate locating of varieties in different regions. Therefore, this study evaluated the yield stability of six promising rice lines and two varieties, Shiroodi and Hashemi, as controls.
Materials and methods: Six promising rice genotypes and two varieties including Shiroodi and Hashemi as controls were cultivated and evaluated in a randomized complete block design with three replications in two regions (Rasht and Chaparsar) for three years starting from 2015. Combined variance analysis and the F test were performed assuming randomness of years and fixedness of locations and genotypes, based on expectation values of the mean squares and comparison of means by Tukey's method. With the significant interaction effect of genotype × environment for the studied traits, stability analysis was performed using Lin and Beans, AMMI and GGE-biplot methods.
Results: The results of combined variance analysis showed that the effects of genotype, location, year × location, genotype × location and genotype × year × location were significant. The results of the stability analysis of rice genotypes by Lin and Binns method showed that Genotypes 19401 and 19403 had the first and second rank in yield stability. Evaluation of AMMI model parameters showed that Genotypes 19401, 19402, 19404 and 19403 were stable genotypes with high general adaptability. Based on ASV parameter and grain yield, Genotypes 19401 and 19402 were selected as the most stable genotypes. Also, the results of the GGE-biplot method showed that Genotype 19401 had the most stability among the investigated genotypes and had a good grain yield.
Conclusion: Overall, the results of evaluating the stability of promising rice lines using Lin and Binns, AMMI and GGE-biplot methods showed that Genotype 19401 was the most stable promising line with mean paddy production of 6.3 tons per hectare in the two locations and three years. It was considered as one of the high-yielding lines without any significant difference with the improved Shiroodi cultivar.

کلیدواژه‌ها [English]

  • Genotype and environment interaction
  • biplot
  • rice
  • Grain yield
Anonymous. 2024. Agricultural statistics of the cropping year 2022-23, Crop and Horticulture Plants: Vol. I: Crop Plants. Information and Communication Technology Center, Department of Economy and Planning Publication, Ministry of Agriculture-jahad. [In Persian]
Cheloei, G., Ranjbar, G., Babaeian Jelodar, N., Bagheri, N., and Noori, M. 2020. Using AMMI model and its parameters for yield stability analysis of rice (Oryza sativa L.) advanced mutant genotypes of Tarrom-Mahalli. Iranian Journal of Genetics and Plant Breeding, 9(1), 70-83. https://doi.org/10.30479/ijgpb.2020.13219.1271. [In Persian]
De Vos, K., Janssens, C., Jacobs, L., Campforts, B., Boere, E., Kozicka, M., & Govers, G. 2023. Rice availability and stability in Africa under future socio-economic development and climatic change. Nature food, 4(6), 518-527. https://doi.org/10.1038/s43016-023-00770-5
Ebadi, A. A., Sharifi, P., & Taher Hallajian, M. 2022. Stability analysis of grain yield of rice mutants by multivariate methods and superiority index. Journal of Agricultural Science and Sustainable Production, 32(2), 313-332. https://doi.org/10.22034/saps.2021.45415.2668. [In Persian]
Ebadi, A., Sharifi, P. and Taher Hallajian, M. 2022. Stability analysis of grain yield of rice mutants by multivariate methods and superiority index. Journal of Agricultural Science and Sustainable Production, 32(2), 313-332. https://doi.org/10.22034/saps.2021.45415.2668. [In Persian]
FAO. 2024. Statistics: FAOSTAT agriculture. Retrieved September 24, 2024. From http://fao.org/crop/statistics.
Fikre, A., Funga, A., Korbu, L., Eshete, M., Girma, N., Zewdie, A., ... & Ojiewo, C. O. 2018. Stability analysis in chickpea genotype sets as tool for breeding germplasm structuring strategy and adaptability scoping. Ethiopian Journal of Crop Science, 6(2), 19-37. http://oar.icrisat.org/id/eprint/10654.
Gauch, Jr, H. G. 1988. Model selection and validation for yield trials with interaction. Biometrics, 705-715. https://doi.org/10.2307/2531585.
Huang, X., Jang, S., Kim, B., Piao, Z., Redona, E., & Koh, H. J. 2021. Evaluating genotype× environment interactions of yield traits and adaptability in rice cultivars grown under temperate, subtropical and tropical environments. Agriculture, 11(6), 558. https://doi.org/10.3390/agriculture11060558.
International Rice Genome Sequencing Project, and Sasaki, T. 2005. The map-based sequence of the rice genome. Nature, 436, 793–800. https://doi.org/10.1038/nature03895.
Kang, M. S. 1997. Using genotype-by-environment interaction for crop cultivar development. Advances in agronomy, 62, 199-252. https://doi.org/10.1016/S0065-2113(08)60569-6.
Li, R., Li, M., Ashraf, U., Liu, S., & Zhang, J. 2019. Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Frontiers in plant science, 10, 543. https://doi.org/10.3389/fpls.2019.00543.
Lin, C. S., & Binns, M. R. 1988. A method of analyzing cultivar x location x year experiments: a new stability parameter. Theoretical and applied genetics, 76, 425-430. https://doi.org/10.1007/BF00265344.
Mohtashami, R. 2023. Genotype × Environment Interaction and Grain Yield Stability Analysis of Rice Genotypes (Oryza sativa L.). Journal of Crop Breeding, 15(47), 113-122. http://dx.doi.org/10.61186/jcb.15.47.113. [In Persian]
Mohtashami, R. Chakerolhoseini, M., Keshavarz, K., Rouzbehi, F. and Hoseini Chaleshtori, M. 2022. Introducing a new variety of rice 'Setayesh' for cultivation in cold and cold temperate regions. Applied Field Crops Research 35(2), 70-84. https://doi.org/10.22092/aj.2023.358343.1599. [In Persian]
Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. 2014. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 1324(1), 7-14. https://doi.org/10.1111/nyas.12540.
Rahim Soroush, H., Hoseini Chaleshtori, M., Ebadi, A. A., Haghighi Hasanalideh, A. R., & Mohadesi, A. 2023. Assessing agronomic traits, grain quality and yield stability of promising rice lines using Lin and Binns and GGE-biplot methods. Cereal Research, 13(3), 215-229. https://doi.org/10.22124/cr.2023.25478.1792. [In Persian]
Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A., & Abbasian, A. 2017. Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Science, 24(3), 173-180. https://doi.org/10.1016/j.rsci.2017.02.001.
Sharifi, P., Erfani, A., Mohaddesi, A., Abbasian, A., Aminpanah, H., Mohammad Yousefi, M., & Saeedi, M. 2020. Stability Analysis of Grain Yield of Some of Rice Genotypes by Parametric and Nonparametric Uni-variate Methods. Journal of Crop Production, 13(3), 85-106. https://doi.org/10.22069/ejcp.2021.17883.2315. [In Persian]
Yan, W. and Kang, M. S. 2002. GGE-biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, Florida, USA. 271 p. https://doi.org/10.1201/9781420040371.
Yan, W., Hunt, L. A. Sheng, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40, 597-605. https://doi.org/10.2135/cropsci2000.403597x.
Yan, W., Kang, M. S., Ma, B., Woods, S. & Cornelius, P. L. 2007. GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop Science, 47(2), 643-653. https://doi.org/10.2135/cropsci2006.06.0374