Ali, F., Kanwal, N., Ahsan, M., Ali, Q., Bibi, I., & Niazi, N.K. 2015. Multivariate analysis of grain yield and its attributing traits in different maize hybrids grown under heat and drought stress. Scientifica, 2015, Article563869.
https://doi.org/10.1155/2015/563869
Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., & Lei, W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032.
https://doi.org/10.5897/AJAR10.027
Azrai, M., Bahrun, A.H., Efendi, R., Andayani, N.N., Jihad, M., Zainuddin, B., & Aqil, M. 2024. Global drought tolerant maize research and development: Analysis and visualization of cutting-edge scientific technologies. Journal of Agriculture and Food Research, 18, Article101323.
https://doi.org/10.1016/j.jafr.2024.101323
Balbaa, M.G., Osman, H.T., Kandil, E.E., Javed, T., Lamlom, S.F., Ali, H.M., Kalaji, H.M., Wróbel, J., Telesiñski, A., & Brysiewicz, A. 2022. Determination of morpho-physiological and yield traits of maize inbred lines (
Zea mays L.) under optimal and drought stress conditions. Frontiers in Plant Science, 13, Article959203.
https://doi.org/10.3389/fpls.2022.959203
Chen, J., Xu, W., Velten, J., Xin, Z., & Stout, J. 2012. Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67, 354-364.
https://doi.org/10.2489/jswc.67.5.354
Dar, I., Dar, Z., Lone, A., Kamaluddin, S.P., Sofi, P., Hussan, S., Dar, M., & Alie, W. 2018. Genetic variability studies involving drought tolerance related traits in maize genotypes. Journal of Agriculture and Ecology Research International, 14, 1-13.
https://doi.org/10.9734/JAERI/2018/40241
Ding, S., Zhang, D., Hao, Y., Hu, M., Tian, H., Yang, K., Zhao, G., Xu, R., & Du, W. 2024. Differences in physiological and agronomic traits and evaluation of adaptation of seven maize varieties. Biology, 13, Article977.
https://doi.org/10.3390/biology13120977
Fang, Y., & Xiong, L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72, 673-689.
https://doi.org/10.1007/s00018-014-1767-0
Fernandez, G.C. 1992. Effective selection criteria for assessing plant stress tolerance. In: Proceeding of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Shanhua, Taiwan. 257–270.
Flint-Garcia, S.A., Buckler, E.S., Tiffin, P., Ersoz, E., & Springer, N.M. 2009. Heterosis is prevalent for multiple traits in diverse maize germplasm. Plos One, 4, e7433.
https://doi.org/10.1371/journal.pone.0007433
Fussell, B.H. 2004. The story of corn. University of New Mexico Press,
Hefny, M.M., Ali, A.A., Byoumi, T.Y., Al-Ashry, M., & Okasha, S.A. 2017. Classification of genetic diversity for drought tolerance in maize genotypes through principal component analysis. Journal of Agricultural Sciences, Belgrade, 62, 213-227.
https://doi.org/10.2298/jas1703213h
Ilyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A.H., Hayat, K., Fahad, S., Khan, A., & Ullah, A. 2021. Drought tolerance strategies in plants: a mechanistic approach. Journal of Plant Growth Regulation, 40, 926-944.
https://doi.org/10.1007/s00344-020-10174-5
Iqbal, J., Shinwari, Z.K., & Rabbani, M.A. 2015a. Maize (
Zea mays L.) germplasm agro-morphological characterization based on descriptive, cluster and principal component analysis. Pakistan Journal of Botany, 47, 255-264.
https://www.pakbs.org/pjbot/PDFs/47(SI)/33.pdf
Iqbal, J., Shinwari, Z.K., Rabbani, M.A., & Khan, S.A. 2015b. Genetic divergence in maize (
Zea mays L.) germplasm using quantitative and qualitative traits. Pakistan Journal of Botany, 47, 227-238.
https://www.pakbs.org/pjbot/PDFs/47(SI)/29.pdf
Islam, N.U., Ali, G., Dar, Z., Maqbool, S., Baghel, S., & Bhat, A. 2020. Genetic variability studies involving drought tolerance related traits in maize (
Zea mays L.) in breds. International Journal of Chemical Studies, 8, 414-419.
https://doi.org/10.22271/chemi.2020.v8.i1f.8282
Kamara, A., Menkir, A., Badu-Apraku, B., & Ibikunle, O. 2003. The influence of drought stress on growth, yield and yield components of selected maize genotypes. The Journal of Agricultural Science, 141, 43-50.
https://doi.org/10.1017/s0021859603003423
Khan, S., Mahmud, F., & Ahmmed, T. 2022. Genetic diversity with cluster analysis of maize genotypes (
Zea mays L.). Advances in Bioscience and Biotechnology, 13, 273-283.
https://doi.org/10.4236/abb.2022.137017
Khodarahmpour, Z., & Hamidi, J. 2012. Study of yield and yield components of corn (
Zea mays L.) inbred lines to drought stress. African Journal of Biotechnology, 11, 3099-3105.
https://doi.org/10.5897/AJB11.2974
Kokab, S., Hatami Maleki, H., Alizadeh, K., & Rahimi, M. 2016. Evaluation of genotypic variation of sunflower inbred lines for agronomic traits under cold rainfed conditions using multiple factor analyses. Iranian Dryland Agronomy Journal, 5, 157-169 [In Persian].
https://doi.org/10.22092/idaj.2016.109663
Kumar, A., Kumari, J., Rana, J., Chaudhary, D., Kumar, R., Singh, H., Singh, T., & Dutta, M. 2015. Diversity among maize landraces in North West Himalayan region of India assessed by agro-morphological and quality traits. Indian Journal of Genetics and Plant Breeding, 75, 188-195.
https://doi.org/10.5958/0975-6906.2015.00029.2
Kumar, A., Singh, N., Jeena, A., Jaiswal, J., & Verma, S. 2020. Evaluation of teosinte derived maize lines for drought tolerance. Indian Journal of Plant Genetic Resources, 33, 60-67.
https://doi.org/10.5958/0976-1926.2020.00009.1
Moharramnejad, S., & Shiri, M. 2024. Genetic diversity of early maturing corn hybrids based on phenological and agronomic traits using multivariate statistical methods. Cereal Biotechnology and Biochemistry, 3, 95-109 [In Persian].
https://doi.org/10.22126/cbb.2024.10865.1074
Mostafavi, K., Firoozi, M., & Mousavi, S.M.N. 2013. Effect of drought stress on yield and yield components of maize hybrids. Scientific Research and Essays, 8, 1145-1149.
https://doi.org/10.5897/SRE11.1730
Mustafa, H.S.B., Farooq, J., Ejaz-Ul-Hasan, Bibi, T., & Mahmood, T. 2015. Cluster and principle component analyses of maize accessions under normal and water stress conditions. Journal of Agricultural Sciences, Belgrade, 60, 33-48.
https://doi.org/10.2298/JAS1501033M
Rahimi, M. 2022. Evaluation of corn lines and hybrids resulting from their crossing based on biochemical and physiological traits in conditions of limited irrigation stress. Cereal Biotechnology and Biochemistry, 1, 375-389 [In Persian].
https://doi.org/10.22126/cbb.2022.8323.1019
Saeed, M., Mumtaz, A., Hussain, D., Arshad, M., Yousaf, M.I., & Ahmad, M.S. 2018. Multivariate analysis based evaluation of maize genotypes under high temperature stress. I3 Biodiversity, 1, Article105, 13Pp.
https://www.researchgate.net/publication/329308869_Multivariate_analysis_based_evaluation_of_maize_genotypes_under_high_temperature_stress
Sas-Institute-Inc. 2014. Base SAS 9.4 Procedures Guide: Statistical Procedures, Third Edition. SAS Institute Inc., Cary, NC, USA.
Spitkó, T., Nagy, Z., Tóthné Zsubori, Z., Halmos, G., Bányai, J., & Marton, L.C. 2014. Effect of drought on yield components of maize hybrids:
Zea mays L. Maydica: A Journal Devoted to Maize and Allied Species, 59, 161-169.
https://journals-crea.4science.it/index.php/maydica/article/view/995
Subedi, K., & Ma, B. 2009. Corn crop production: growth, fertilization and yield. In: Danforth, A.T. (ed.), Corn Crop Production: Growth, Fertilization and Yield, pp. 1-84, Nova Science Pub. Inc, UK.
http://dx.doi.org/10.13140/2.1.3515.9040