تحلیل جامع ژنومی، تکاملی و ساختاری خانواده‌های ژنی دارای موتیف LysM در غلات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران.

2 گروه مهندسی تولیدات گیاهی و ژنتیک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 مرکز تحقیقات تالاسمی و هموگلوبینوپاتی، پژوهشکده سلامت، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران.

10.22126/cbb.2025.12228.1109

چکیده

مقدمه: غلات منبع اصلی انرژی برای مصرف انسان و خوراک دام هستند. غلات در طول زندگی خود با تنش­های زنده و غیرزنده متعددی مواجهه می شوند که در بیشتر موارد به آنها خسارت وارد کرده و روی کیفیت و کمیت محصول آنها تاثیر می­گذارند. بنابراین، حفظ عملکرد آنها با جلوگیری از حمله پاتوژن­های بیمارگر به ویژه قارچ­ها و اوومیست­ها از اهمیت بالایی برخوردار است. پروتئین­های متعددی در مسیرهای سیگنالینگ مولکولی ویژه­ای در مقاومت غلات به تنش­ها دخالت دارند. در این میان، پروتئین‌های دارای موتیف لیزین(LysM)  نقش مهمی در ایمنی ذاتی گیاهان، روابط همزیستی بین گیاهان و میکروارگانیسم‌ها و بیوسنتز دیواره سلولی دارند. با این حال، مسیرهای تکاملی و تنوع عملکردی این خانواده از پروتئین‌ها برای مهمترین گیاهان زراعی بشر از جمله غلات به‌طور کامل ناشناخته باقی مانده است.
مواد و روش‌ها: در این مطالعه، یک تجزیه و تحلیل جامع ژنومی روی خانواده­های ژنی دارای موتیف LysM در هفت گونه اصلی غلات شامل: Avena sativa، Oryza sativa، Triticum aestivum، Sorghum bicolor، Hordeum vulgare، Zea mays و Secale cereale صورت گرفت. از ابزارهای بیوانفورماتیکی برای شناسایی ژن­ها و پروتئین‌های دارای موتیف لیزین (LysM) استفاده شد. غربالگری ژن­ها برای استخراج ژن­های هدف بر اساس نرم افزارهای مختلف و با توجه به پارامترهای پیش فرض، مشخص گردید.
یافته‌ها: در مجموع و در ژنوم این هفت غله، تعداد 106 ژن دارای موتیف LysM شناسایی شدند که در بین آنها، تنوع ساختاری قابل توجهی مشاهد شد و الگوهای پراکندگی کروموزومی متنوعی از خود نشان دادند. تجزیه و تحلیل­های فیلوژنتیکی، این ژن‌ها را به سه زیرخانواده‌ی مجزا طبقه‌بندی کرد که این موضوع نشان‌دهنده‌ی حفظ شدگی این پروتئین­ها در کنار روند تکامل اختصاصی آنها  است. تجزیه و تحلیل‌های بیشتر این ژن­ها، سینتنی (Synteny) و هم‌خطی (Collinearity) قابل توجهی را میان گونه‌های غلات نشان داد که بر محدودیت‌های تکاملی و حفظ عملکرد این خانواده از ژن­ها دلالت دارد. بررسی ساختار ژنی و تجزیه و تحلیل موتیف‌های حفاظت‌شده نیز بر تنوع عملکردی این ژن‌ها تأکید داشت. تجزیه و تحلیل عناصر تنظیمی Cis بیانگر نقش ژن‌های LysM در پاسخ به تنش‌های زیستی و غیرزیستی، به‌ویژه شناسایی عوامل بیماری‌زا و مسیرهای سیگنال‌دهی بود.
نتیجه‌گیری: یافته‌های این پژوهش، نشان دادند که ژن­های داری موتیف  LysMدارای پویایی تکاملی و اهمیت عملکردی در غلات هستند و از این رو، می­توان از آنها برای برنامه‌های اصلاح مولکولی غلات استفاده نمود. نتایج مطالعه حاضر، درک ما را از مکانیسم‌های مولکولی مبتنی بر ژن‌های داری موتیف  LysMو کاربردهای بالقوه‌ی آن‌ها در راهبردهای بهنژادی با هدف افزایش مقاومت به تنش و بهره‌وری در غلات را افزایش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comprehensive Genomic, Evolutionary, and Structural Analysis of LysM Motif-Containing Genes in Cereals

نویسندگان [English]

  • Farhad Nazarian-Firouzabadi 1
  • رضایی میرقائد Rezaei Mirghayed 1
  • Seyyed Mohsen Sohrabi 2
  • Mohammad-Reza Mahmoudian-Sani 3
1 Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
2 Assistant professor, Production Engineering and Plant Genetics Department, Faculty of Agriculture, Shahid Chamran University, Ahvaz, Iran.
3 Assistant Professor of Thalassemia and Hemoglobinopathy Research Center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
چکیده [English]

Introduction: Cereals are the primary source of energy for human consumption as well as animal feed. Throughout their lifecycle, cereals are exposed to a wide range of both biotic and abiotic stresses that often lead to significant yield losses, impacting both the quality and quantity of their yield. Consequently, safeguarding their productivity, particularly by resistance against biotic threats such as fungi and oomycetes, is crucial. A variety of proteins play key roles in specialised molecular signalling pathways that enhance the stress resistance of cereals. To this end, maintaining cereal productivity by controlling plant diseases, particularly fungi and oomycetes, is of critical importance. LysM motif-containing proteins play significant roles in plant innate immunity, symbiotic interactions, plant-pathogen interactions, and cell wall biosynthesis. However, the evolutionary pathways and functional diversity of these protein families remain largely unknown in the major cereal crops.
Materials and methods: In this study, a comprehensive genomic analysis was conducted on LysM motif-containing gene families across seven major cereal species, including Avena sativa, Oryza sativa, Triticum aestivum, Sorghum bicolor, Hordeum vulgare, Zea mays, and Secale cereale. Bioinformatics tools were employed to detect genes and proteins featuring the lysin (LysM) motif. Target genes were selected through screening processes using multiple software platforms and predetermined parameters.
Results: A total of 106 LysM motif-containing genes were identified across seven selected cereal genomes. These genes exhibited considerable structural diversity and displayed a wide range of chromosomal distribution patterns. Phylogenetic analyses classified LysM motif-containing genes into three distinct subfamilies, indicating both evolutionary conservation and lineage-specific adaptations. Further analyses of LysM motif-containing genes revealed significant synteny and collinearity among the cereal species, suggesting evolutionary relationships and the functional conservation of LysM motif-containing genes. Gene structures and conserved motif analyses revealed the functional diversity of LysM motif-containing genes. Analysis of cis-regulatory elements indicated that LysM genes are involved in responses to both biotic and abiotic stresses, particularly in response to pathogen recognition and signalling pathways.
Conclusion: The findings of this study demonstrate that LysM motif-containing genes exhibit evolutionary dynamics and play important functional roles in cereals. Therefore, LysM motif-containing genes hold great potential in molecular breeding programs aimed at improving cereal crops to resist both biotic and abiotic stresses. The results of this study improve our understanding of the molecular mechanisms involving LysM motif-containing genes and highlight their potential applications in breeding strategies for improving stress resistance and productivity in cereals.

کلیدواژه‌ها [English]

  • Interaction
  • stress response
  • phylogenetic analysis
  • Chitin-binding domain
  • Systemic acquired resistance
Abedi, A., Hajiahmadi, Z., Kordrostami, M., Esmaeel, Q. & Jacquard, C. 2021. Analyses of Lysin-motif Receptor-like Kinase (LysM-RLK) Gene Family in Allotetraploid Brassica napus L. and Its Progenitor Species: An In Silico Study. Cells, 11, 37.  https://doi.org/10.3390/cells11010037
Akcapinar, G. B., Kappel, L., Sezerman, O. U. & Seidl-Seiboth, V. J. C. g. 2015. Molecular diversity of LysM carbohydrate-binding motifs in fungi. Curr Genet, 61, 103-113.  https://doi.org/10.1007/s00294-014-0471-9
Ao, Y., Li, Z., Feng, D., Xiong, F., Liu, J., Li, J. F., Wang, M., Wang, J., Liu, B. & Wang, H. B. 2014. Os CERK 1 and Os RLCK 176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. The Plant Journal, 80, 1072-1084.  https://doi.org/10.1111/tpj.12710
Berendzen, K. W., Weiste, C., Wanke, D., Kilian, J., Harter, K. & Dröge-Laser, W. 2012. Bioinformatic cis-element analyses performed in Arabidopsis and rice disclose bZIP-and MYB-related binding sites as potential AuxRE-coupling elements in auxin-mediated transcription. BMC plant biology, 12, 1-19.  https://doi.org/10.1186/1471-2229-12-125
 
Buendia, L., Girardin, A., Wang, T., Cottret, L. & Lefebvre, B. J. F. i. p. s. 2018. LysM receptor-like kinase and LysM receptor-like protein families: an update on phylogeny and functional characterization. Front Plant Sci, 9, 1531. https://doi.org/10.3389/fpls.2018.01531
Chanwala, J., Kumari, K., Jha, D. K., Giri, M. K. & Dey, N. J. P. S. 2025. Pearl millet WRKY transcription factor PgWRKY52 positively regulates salt stress tolerance through ABA-MeJA mediated transcriptional regulation. Plant Stress, 16, 100814.  https://doi.org/10.1016/j.stress.2025.100814
Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y. & Xia, R. J. M. p. 2020a. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13, 1194-1202.  https://doi.org/10.1016/j.molp.2020.06.009
Chen, D., Li, G., Liu, J., Wisniewski, M., Droby, S., Levin, E., Huang, S., Liu, Y. J. M. G. & Genomics 2020b. Multiple transcriptomic analyses and characterization of pathogen-related core effectors and LysM family members reveal their differential roles in fungal growth and pathogenicity in Penicillium expansum. Molecular Genetics and Genomics, 295, 1415-1429.  https://doi.org/10.1007/s00438-020-01710-9
Chen, Z., Shen, Z., Zhao, D., Xu, L., Zhang, L. & Zou, Q. 2020c. Genome-wide analysis of LysM-containing gene family in wheat: Structural and phylogenetic analysis during development and defense. Genes, 12, 31.  https://doi.org/10.3390/genes12010031
Chen, Z., Shen, Z., Zhao, D., Xu, L., Zhang, L. & Zou, Q. J. G. 2020d. Genome-wide analysis of LysM-containing gene family in wheat: Structural and phylogenetic analysis during development and defense. Genes (Basel), 12, 31.  https://doi.org/10.3390/genes12010031
Crumière, M., de Vallée, A., Rascle, C., Gillet, F. x., Nahar, S., van Kan, J. A., Bruel, C., Poussereau, N. & Choquer, M. J. J. o. B. M. 2025. A LysM Effector Mediates Adhesion and Plant Immunity Suppression in the Necrotrophic Fungus Botrytis cinerea. J Basic Microbiol, 65, e2400552.  https://doi.org/10.1002/jobm.202400552
Desai, H., Hamid, R., Ghorbanzadeh, Z., Bhut, N., Padhiyar, S. M., Kheni, J. & Tomar, R. S. J. S. r. 2021. Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Sci Rep, 11, 20620.  https://doi.org/10.1038/s41598-021-00100-4
Desaki, Y., Miyata, K., Suzuki, M., Shibuya, N. & Kaku, H. J. I. I. 2018. Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immun, 24, 92-100.  https://doi.org/10.1177/1753425917738885
Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A., Hetherington, K., Holm, L. & Mistry, J. J. N. a. r. 2014. Pfam: the protein families database. Nucleic Acids Res, 42, D222-D230.  https://doi.org/10.1093/nar/gkt1223
Ghorbanzadeh, Z., Hamid, R., Jacob, F., Mirzaei, M., Zeinalabedini, M., Abdirad, S., Atwell, B. J., Haynes, P. A., Ghaffari, M. R. & Salekdeh, G. H. J. J. o. P. G. R. 2023. MicroRNA profiling of root meristematic zone in contrasting genotypes reveals novel insight into in rice response to water deficiency. Journal of Plant Growth Regulation, 42, 3814-3834.  https://doi.org/10.1007/s00344-022-10842-8
Gibelin‐Viala, C., Amblard, E., Puech‐Pages, V., Bonhomme, M., Garcia, M., Bascaules‐Bedin, A., Fliegmann, J., Wen, J., Mysore, K. S. & le Signor, C. 2019. The Medicago truncatula LysM receptor‐like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. New Phytologist, 223, 1516-1529.  https://doi.org/10.1111/nph.15891
Gong, B.-Q., Wang, F.-Z. & Li, J.-F. J. T. i. p. s. 2020. Hide-and-seek: chitin-triggered plant immunity and fungal counterstrategies. Trends Plant Sci, 25, 805-816.  https://doi.org/10.1016/j.tplants.2020.03.006
Gong, X., Han, D., Zhang, L., Yin, G., Yang, J., Jia, H., Cao, Z., Dong, J., Liu, Y. & Gu, S. J. J. o. I. A. 2025. Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica. Journal of Integrative Agriculture, 24, 1860-1874  https://doi.org/10.1016/j.jia.2024.06.006
Grabherr, H. M. 2011. Characterisation of the role of LysM receptor-like kinases and the CHIA chitinase in the perception of peptidoglycan and in the innate immunity of Arabidopsis thaliana. PhD. Thesis, Universität Tübingen.
Grote, U., Fasse, A., Nguyen, T. T. & Erenstein, O. J. F. i. S. F. S. 2021. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst, 4, 617009.  https://doi.org/10.3389/fsufs.2020.617009
Guo, J., Gong, B. Q. & Li, J. F. J. T. P. J. 2021. Arabidopsis lysin motif/F‐box‐containing protein InLYP1 fine‐tunes glycine metabolism by degrading glycine decarboxylase GLDP2. Plant J, 106, 394-408.  https://doi.org/10.1111/tpj.15171
Gust, A. A. J. P. p. 2015. Peptidoglycan perception in plants. PLoS Pathog, 11, e1005275.  https://doi.org/10.1371/journal.ppat.1005275
Hamid, R., Ghorbanzadeh, Z., Jacob, F., Nekouei, M. K., Zeinalabedini, M., Mardi, M., Sadeghi, A. & Ghaffari, M. R. J. B. P. B. 2024a. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation. BMC Plant Biol, 24, 468.  https://doi.org/10.1186/s12870-024-05172-8
Hamid, R., Jacob, F., Ghorbanzadeh, Z., Mardi, M., Ariaeenejad, S., Zeinalabedini, M. & Ghaffari, M. R. J. P. G. 2024b. Genome-wide identification and characterization of FORMIN genes in cotton: Implications for abiotic stress tolerance. 40, 100474.
He, J., Zhang, C., Dai, H., Liu, H., Zhang, X., Yang, J., Chen, X., Zhu, Y., Wang, D. & Qi, X. J. M. P. 2019. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol Plant, 12, 1561-1576. ttps://doi.org/10.1016/j.molp.2019.https://doi.org/10.015
Hu, S.-P., Li, J.-J., Dhar, N., Li, J.-P., Chen, J.-Y., Jian, W., Dai, X.-F. & Yang, X.-Y. 2021a. Lysin motif (LysM) proteins: interlinking manipulation of plant immunity and fungi. International journal of molecular sciences, 3114, 22https://doi.org/10.3390/ijms22063114
Hu, S.-P., Li, J.-J., Dhar, N., Li, J.-P., Chen, J.-Y., Jian, W., Dai, X.-F. & Yang, X.-Y. J. I. j. o. m. s. 2021b. Lysin motif (LysM) proteins: interlinking manipulation of plant immunity and fungi. Int J Mol Sci, 22, 311https://doi.org/10.3390/ijms22063114
Ji, L., Yang, X. & Qi, F. 2022. Distinct responses to pathogenic and symbionic microorganisms: the role of plant immunity. International Journal of Molecular Sciences, 23, 10427.  https://doi.org/10.3390/ijms231810427
Kaur, A., Pati, P. K., Pati, A. M. & Nagpal, A. K. 2017. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PloS one, 12, e0184523.  https://doi.org/10.1371/journal.pone.0184523
Kumar, S., Stecher, G., Suleski, M., Sanderford, M., Sharma, S. & Tamura, K. 2024. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Molecular Biology and Evolution, 41, msae263.  https://doi.org/10.1093/molbev/msae263
Levin, E., Ballester, A. R., Raphael, G., Feigenberg, O., Liu, Y., Norelli, J., Gonzalez-Candelas, L., Ma, J., Dardick, C. & Wisniewski, M. J. P. O. 2017. Identification and characterization of LysM effectors in Penicillium expansum. PLoS One, 12, e0186023.  https://doi.org/10.1371/journal.pone.0186023
Li, Q., Qi, J., Qin, X., Hu, A., Fu, Y., Chen, S. & He, Y. J. S. H. 2021. Systematic identification of lysin-motif receptor-like kinases (LYKs) in Citrus sinensis, and analysis of their inducible involvements in citrus bacterial canker and phytohormone signaling. Scientia Horticulturae, 276, 109755.  https://doi.org/10.1016/j.scienta.2020.109755
Liao, D., Sun, X., Wang, N., Song, F. & Liang, Y. J. F. i. P. S. 2018. Tomato LysM receptor-like kinase SlLYK12 is involved in arbuscular mycorrhizal symbiosis. Front. Plant Sci, 9, 1004.  https://doi.org/10.3389/fpls.2018.01004
Liu, B., Li, J.-F., Ao, Y., Qu, J., Li, Z., Su, J., Zhang, Y., Liu, J., Feng, D. & Qi, K. J. T. P. C. 2012. Lysin motif–containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell, 24, 3406-3419.  https://doi.org/10.1105/tpc.112.102475
Liu, L., Xu, L., Jia, Q., Pan, R., Oelmüller, R., Zhang, W., Wu, C. J. P. S. & Behavior 2019. Arms race: diverse effector proteins with conserved motifs. Plant Signal Behav, 14, 1557008.  https://doi.org/10.1080/15592324.2018.1557008
Liu, L., Yahaya, B. S., Li, J. & Wu, F. J. F. i. P. S. 2024. Enigmatic role of auxin response factors in plant growth and stress tolerance. Front Plant Sci, 15, 1398818.  https://doi.org/10.3389/fpls.2024.1398818
Liu, M., Gao, N., Zhao, Y., Wu, Y. & Yuan, Z. 2022. Wheat Lysin-Motif-Containing Proteins Characterization and Gene Expression Patterns under Abiotic and Biotic Stress. Phyton, 91, 2367 . https://doi.org/10.32604/phyton.2022.0214
Meng, Y., Li, J., Yuan, W., Liu, R., Xu, L. & Huang, L. 2024. Pseudomonas thivervalensis K321, a promising and effective biocontrol agent for managing apple Valsa canker triggered by Valsa mali. Pesticide Biochemistry and Physiology, 204, 106095.  https://doi.org/10.1016/j.pestbp.2024.106095
Miryala, S. K., Anbarasu, A. & Ramaiah, S. 2018. Discerning molecular interactions: a comprehensive review on biomolecular interaction databases and network analysis tools. Gene, 642, 84-94https://doi.org/10.1016/j.gene.2017.11.028
Nakagawa, T., Okazaki, S. & Shibuya, N. 2014. Genes involved in pathogenesis and defense responses. The Lotus japonicus Genome, 163-169.
Nazarian-Firouzabadi, F., Joshi, S., Xue, H. & Kushalappa, A. C. J. M. B. R. 2019. Genome-wide in silico identification of LysM-RLK genes in potato (Solanum tuberosum L.). Mol Biol Rep, 46, 5005-5017.  https://doi.org/10.1007/s11033-019-04951-z
Peng, X., Wang, J., Peng, W., Wu, F.-X. & Pan, Y. J. B. i. b. 2017. Protein–protein interactions: detection, reliability assessment and applications. Brief Bioinform, 18, 798-819.  https://doi.org/10.1093/bib/bbw066
Petutschnig, E. K., Jones, A. M., Serazetdinova, L., Lipka, U. & Lipka, V. 2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. Journal of Biological Chemistry, 285, 28902-28911.  https://doi.org/10.1074/jbc.M110.116657
Ren, W., Zhang, C., Wang, M., Zhang, C., Xu, X., Huang, Y., Chen, Y., Lin, Y. & Lai, Z. 2022. Genome-wide identification, evolution analysis of LysM gene family members and their expression analysis in response to biotic and abiotic stresses in banana (Musa L.). Gene, 845, 146849.  https://doi.org/10.1016/j.gene.2022.146849
Roudaire, T., Marzari, T., Landry, D., Löffelhardt, B., Gust, A. A., Jermakow, A., Dry, I., Winckler, P., Héloir, M.-C. & Poinssot, B. 2023a. The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYK1-1. Frontiers in Plant Science, 14, 1130782. https://doi.org/10.3389/fpls.2023.1130782
Singh, K., Upadhyay, S. K. J. E. & Botany, E. 2021. LysM domain-containing proteins modulate stress response and signalling in Triticum aestivum L. 189, 104558.  Environmental and Experimental Botany,  https://doi.org/10.1016/j.envexpbot.2021.104558
Tombuloglu, G., Tombuloglu, H., Cevik, E., Sabit, H. J. P. & Pathology, M. P. 2019. Genome-wide identification of Lysin-Motif Receptor-Like Kinase (LysM-RLK) gene family in Brachypodium distachyon and docking analysis of chitin/LYK binding. Physiological and Molecular Plant Pathology, 106, 217-225.  https://doi.org/10.1016/j.pmpp.2019.03.002
Wan, J., Tanaka, K., Zhang, X.-C., Son, G. H., Brechenmacher, L., Nguyen, T. H. N. & Stacey, G. 2012. LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant physiology, 160, 396-406.  https://doi.org/10.1104/pp.112.201699
Wan, J., Zhang, X.-C., Neece, D., Ramonell, K. M., Clough, S., Kim, S.-y., Stacey, M. G. & Stacey, G. J. T. P. C. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 20, 471-481.  https://doi.org/10.1105/tpc.107.056754
Wang, Y., Mostafa, S., Zeng, W. & Jin, B. J. I. J. o. M. S. 2021. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci, 22, 8568.  https://doi.org/10.3390/ijms22168568
Wong, J. E., Nadzieja, M., Madsen, L. H., Bücherl, C. A., Dam, S., Sandal, N. N., Couto, D., Derbyshire, P., Uldum-Berentsen, M. & Schroeder, S. J. P. o. t. N. A. o. S. 2019. A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc Natl Acad Sci U S A, 116, 14339-14348.  https://doi.org/10.1073/pnas.1815425116
Xu, B. & Timko, M. J. P. m. b. 2004. Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements. Plant Molecular Biology, 55, 743-761.  https://doi.org/10.1007/s11103-004-1962-8
Xu, J., Wang, G., Wang, J., Li, Y., Tian, L., Wang, X. & Guo, W. J. B. p. b. 2017. The lysin motif-containing proteins, Lyp, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC Plant Biol, 17, 1-18.  https://doi.org/10.1186/s12870-017-1096-1
Yang, H., Bayer, P. E., Tirnaz, S., Edwards, D. & Batley, J. J. B. 2020. Genome-wide identification and evolution of receptor-like kinases (RLKs) and receptor like proteins (RLPs) in Brassica juncea. Biology (Basel), 10, 17.  https://doi.org/10.3390/biology10010017
Zhang, L., Li, S., Fang, X., An, H. & Zhang, X. 2023. Genome-wide analysis of LysM gene family members and their expression in response to Colletotrichum fructicola infection in Octoploid strawberry (Fragaria× ananassa). Frontiers in Plant Science, 13, 1105591.  https://doi.org/10.3389/fpls.2022.1105591
Zhou, D., Chen, X., Chen, X., Xia, Y., Liu, J. & Zhou, G. J. F. i. M. 2023. Plant immune receptors interact with hemibiotrophic pathogens to activate plant immunity. Front Microbiol, 14, 1252039.  https://doi.org/10.3389/fmicb.2023.1252039
Zhou, Z., Tian, Y., Cong, P. & Zhu, Y. J. P. S. 2018. Functional characterization of an apple (Malus x domestica) LysM domain receptor encoding gene for its role in defense response. Plant Sci, 269, 56-65.  https://doi.org/10.1016/j.plantsci.2018.01.006
Zhu, Q., Zhang, X.-L., Nadir, S., DongChen, W.-H., Guo, X.-Q., Zhang, H.-X., Li, C.-Y., Chen, L.-J. & Lee, D.-S. 2017a. A LysM domain-containing gene OsEMSA1 involved in embryo sac development in rice (Oryza sativa L.). Frontiers in Plant Science, 8, 1596.  https://doi.org/10.3389/fpls.2017.01596
Zhu, Q., Zhang, X.-L., Nadir, S., DongChen, W.-H., Guo, X.-Q., Zhang, H.-X., Li, C.-Y., Chen, L.-J. & Lee, D.-S. J. F. i. P. S. 2017b. A LysM domain-containing gene OsEMSA1 involved in embryo sac development in rice (Oryza sativa L.). Front Plant Sci, 8, 1596.  https://doi.org/10.3389/fpls.2017.01596