مروری بر جنبه‌های فیزیولوژیکی و بیوشیمیایی تنش گرما در برنج

نوع مقاله : مروری

نویسندگان

1 دانشجوی دکتری اگروتکنولوژی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

2 دانش آموخته دکتری زراعت گرایش اکولوژی، دانشکده تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران.

چکیده

گرمایش جهانی میانگین دمای زمین را افزایش داده است و تنش‌های حاصل از گرمای شدید در مناطق مختلف افزایش یافته است. تنش گرمایی به‌صورت افزایش دما فراتر از آستانه بحرانی برای مدت معین در مراحل مختلف رشد گیاهان زراعی رخ می‌دهد. بر این اساس تغییرات کمی و کیفی گیاهان زراعی از جمله برنج در اثر تنش گرمایی ناشی از افزایش جهانی دما یکی از دغدغه‌ها و نگرانی‌های مهم در بسیاری از مناطق برنج خیز دنیا از جمله کشور ما محسوب می‌شود. گیاهان با تغییر متابولیسم در سطوح فیزیولوژیکی، بیوشیمیایی و مولکولی با تنش گرمایی سازگار می‌شوند. یک سیستم فتوسنتزی پایدار  می‌تواند آسیب ناشی از حرارت را کاهش دهد و عملکرد دانه را تحت شرایط تنش گرمایی افزایش دهد. آسیب ناشی از دمای بالا می‌تواند در مراحل مختلف رشد برنج، از مرحله جوانه‌زنی تا گیاهچه‌ای، گلدهی و رسیدگی دانه متفاوت باشد. مراحل گلدهی و پر شدن دانه از مراحل حساس به گرما در گیاه برنج هستند. آسیب حرارتی در این مراحل می‌تواند زیان اقتصادی قابل توجهی را به تولید برنج وارد کند. در این مقاله سعی شده است تا تغییرات فیزیولوژیکی برنج تحت تاثیر تنش گرمایی مورد ارزیابی قرار گیرد. تغییرات مورد بررسی شامل واکنش بیوشیمیایی گیاه (نشت الکترولیت، سطح پراکسیداسیون لیپیدی و فعالیت آنزیم آنتی‌اکسیدانی)، سطح فتوسنتز، تغییرات غشایی، تغییرات گیاه جهت تحمل یا فرار از تنش، تغییر متابولیسم در سطوح فیزیولوژیکی، بیوشیمیایی و مولکولی در جهت سازگاری به گرما، تنظیم فعالیت عوامل رونویسی مرتبط با پاسخ تنش حرارتی و تغییرات الگوی بیان ژن‌ها تحت تاثیر تنش گرمایی است. همچنین در این مطالعه ارتباط تنش گرما و ویژگی‌های بیوشیمیایی تعیین‌کننده کیفیت برنج و عوامل موثر بر کارایی کیفیت دانه برنج از جمله فعالیت‌های متابولیک قند و نشاسته و بیان ژن صفات کیفی برنج تحت تاثیر تنش گرمایی، مورد ارزیابی قرار گرفت. در نهایت بررسی قابلیت اصلاح ارقام برنج برای مقابله با تنش گرمایی مرور گردید. در بحث اصلاح برای تحمل گرما در برنج، وراثت‌پذیری و تنوع ژنتیکی صفات مرتبط با تحمل تنش، نتایج مطالعات صورت گرفته در زمینه شناسایی  QTLهای مرتبط با تحمل گرما، کاربرد روش‌های کلاسیک جهت معرفی ارقام متحمل به گرما و جهش القایی در اصلاح برنج برای افزایش تحمل تنش گرمایی مورد ارزیابی قرار گرفتند. نتایج نشان داده است گیاه برنج می‌تواند تنش گرمایی غیرکشنده را با اجتناب، فرار یا تغییرات فیزیکی در سطح سلولی مانند تغییر وضعیت فیزیکی غشاء، سنتز پروتئین­های شوک حرارتی تخصصی و دفاع ضد اکسیداتیو تقویت شده، تحمل کنند. تغییرات در وضعیت فیزیکی غشاء و ترکیبات آن، تولید پروتئین‌های شوک حرارتی، عوامل رونویسی، اسمولیت‌ها و افزایش سطح دفاع آنتی‌اکسیدانی، فرآیندهای کلیدی برای حفظ تعادل اکسایش- کاهش سلولی در تنش گرمایی هستند. بررسی تغییرات کیفی برنج تحت تنش گرما نشان داد که کاهش سطح آنزیم‌ها در سنتز ساکارز و نشاسته آسیب قابل‌توجهی به عملکرد و کیفیت دانه در هوای گرم وارد می‌کند. همچنین، شناسایی چندین QTL برای تحمل گرما، جهش القایی، اصلاح کلاسیک با استفاده از تلاقی واریته باکیفیت و واریته مقاوم به تنش گرمایی، نتایج مطلوبی در زمینه شناسایی و معرفی ارقام مقاوم به تنش گرمایی داشته است. بر اساس نتایج بررسی شده می‌توان این نتیجه‌گیری را حاصل نمود که تنش گرمایی، شرایط اجنتاب‌ناپذیری در کشت برنج است؛ بنابراین شناسایی و مرور تغییرات فیزیولوژیک آن می‌تواند بسیار حائز اهمیت باشد و به تعیین اهداف اصلاحی مناسب کمک نماید.

کلیدواژه‌ها


عنوان مقاله [English]

A review of physiological and biochemical aspects of heat stress in rice

نویسندگان [English]

  • Soheil Karamniya 1
  • Pooya Aalaee Bazkiaee 2
  • Alireza Haghighi Hasanalideh 3
1 PhD Student in agrotechnology, Faculty of Agriculture, Guilan University, Rasht, Iran.
2 Graduated Ph.D., Department of Agronomy, Plant Production Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Rice Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
چکیده [English]

Global warming has increased the earth's average temperature, and the tensions resulting from extreme heat have increased in different regions. Heat stress occurs in the form of an increase in temperature beyond the critical threshold for a certain period of time in different stages of the growth of crop plants. Therefore, the quantitative and qualitative changes in crop plants, including rice, as a result of heat stress caused by the global increase in temperature is one of the most critical concerns in many rice-growing regions of the world, including our country. Plants were adapted to heat stress by changing physiological, biochemical, and molecular metabolism. A stable photosynthetic system can reduce heat damage and increase grain yield under heat-stress conditions. The damage caused by high temperatures can be different in different rice growth stages, from germination to seedling stage, flowering, and seed ripening. The flowering and seed-filling stages are heat-sensitive stages in rice plants. Thermal damage in these stages can cause significant economic losses to rice production. In this article, an attempt has been made to review the physiological changes of rice under the influence of heat stress. The studied changes include the biochemical reaction of the plant during heat stress (electrolyte leakage, lipid peroxidation level and antioxidant enzyme activity), photosynthesis, membrane changes, plant changes to tolerate or escape from heat stress, changes in metabolism at the physiological, biochemical and molecular levels, adaptation to heat, regulating the activity of transcription factors related to heat stress response and changes in the expression pattern of genes under the influence of heat stress. Also, the relationship between heat stress and the biochemical characteristics that determine the quality of rice and the factors affecting the efficiency of rice grain quality, including the metabolic activities of sugar and starch and the gene expression of quality traits of rice under the influence of heat stress, were studied. Finally, the ability of rice breeding to deal with heat stress was reviewed. In the discussion of breeding for heat tolerance in rice, heritability and genetic diversity of traits related to heat stress tolerance, the results of studies conducted in the field of identifying QTLs for heat tolerance, the use of classical crossing to introduce varieties resistant to heat stress, induced mutation in breeding rice was evaluated for increased heat stress tolerance. The results have shown that rice can tolerate non-lethal heat stress by avoiding, escaping, or physical changes at the cellular level, such as changing the physical state of the membrane, synthesis of specialized heat shock proteins, and enhancing anti-oxidative defense. Changes in the physical state of the membrane and its compounds, the production of heat shock proteins, transcription factors, osmolytes, and increasing the level of antioxidant defense are the key processes to maintain the cellular oxidation-reduction balance in heat stress. Investigating the quality changes of rice under heat stress showed that the decrease in the level of enzymes in the synthesis of sucrose and starch causes significant damage to the yield and quality of the grain in hot weather. Also, the identification of several QTLs for heat tolerance, induction mutation, classical breeding using the crossing of a high-quality variety and a heat stress-resistant variety had favorable results in the identification and introduction of heat stress-resistant cultivars. Based on the reviewed results, it can be concluded that heat stress is an inevitable condition in rice cultivation; therefore, identifying and reviewing its physiological changes can be very important and provide appropriate breeding goals.

کلیدواژه‌ها [English]

  • Heat shock protein
  • biotic stress
  • rice quality
Agrawal, L., Gupta, S., Mishra, S. K., Pandey, G., Kumar, S., Chauhan, P. S., Chakrabarty, D., & Nautiyal, C. S. 2016. Elucidation of complex nature of PEG induced drought-stress response in rice root using comparative proteomics approach. Frontiers in Plant Science, 7, 1466.
Ahsan, N., Lee, S. H., Lee, D. G., Lee, H., Lee, S. W., Bahk, J. D., & Lee, B. H. 2007. Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. Comptes Rendus – Biologies, 330, 735–746.
Arshad, M. S., Farooq, M., Asch, F., Krishna, J. S., Prasad, P. V., & Siddique, K.H. 2017. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 115, 57-72.
Bahuguna, R. N., & Jagadish, K. S. 2015. Temperature regulation of plant phenological development. Environmental and Experimental Botany, 111, 83-90.
Bajji, M., Kinet, J.M., & Lutts, S. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant growth regulation, 36(1), 61-70.
Campos, P. S., nia Quartin, V., chicho Ramalho, J., & Nunes, M. A. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal of plant physiology, 160(3), 283-292.
Chakraborty, A., & Bhattacharjee, S. 2015. Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. Journal of plant physiology, 176, 65–77.
Chang, C. C., Huang, P. S., Lin, H. R., & Lu, C. H. 2007. Transactivation of protein expression by rice HSP101 in planta and using Hsp101 as a selection marker for transformation. Plant and Cell Physiology, 48(8), 1098–1107.
Chen, J. H., Chen, S. T., He, N. Y., Wang, Q. L., Zhao, Y., Gao, W., & Guo, F.Q. 2020. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nature Plants, 6(5), 570-580.
Chen, X., Lin, S., Liu, Q., Huang, J., Zhang, W., Lin, J., Wang, Y., Ke, Y., & He, H. 2014. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et Biophysica Acta, 1844(4), 818–828.
Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., & Liu, J. 2005. A proteomic Aanalysis of cold stress responses in rice seedlings. Proteomics, 5, 3162–3172.
De Storme, N., & Geelen, D. 2014. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant, cell & environment, 37(1), 1-18.
Dingkuhn, M., Pasco, R., Pasuquin, J. M., Damo, J., Soulié, J. C., Raboin, L. M., & Kretzschmar, T. 2017. Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 2. Thermal stress and spikelet sterility. Journal of Experimental Botany, 68(15), 4389-4406.
Driedonks, N., Rieu, I., & Vriezen, W. H. 2016. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant reproduction, 29(1), 67-79.
El-Esawi, M. A., & Alayafi, A. A. 2019. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes, 10(1), 56.
Feng, L., Wang, K., Li, Y., Tan, Y., Kong, J., Li, H., & Zhu, Y. 2007. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant cell reports, 26(9), 1635-1646.
Feng, L., Wang, K., Li, Y., Tan, Y., Kong, J., Li, H., Li Y., & Zhu, Y. 2007. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant cell reports, 26(9), 1635-1646.
Forster, B. P., Till, B. J., Ghanim, A. M. A., Huynh, H. O. A., Burstmayr, H., & Caligari, P. D. S. 2015. Accelerated plant breeding. CABI Reviews, 1-16.
Fu, G., Feng, B., Zhang, C., Yang, Y., Yang, X., Chen, T., & Tao, L. 2016. Heat stress is more damaging to superior spikelets than inferiors of rice (Oryza sativa L.) due to their different organ temperatures. Frontiers in Plant Science, 7, 1637.
Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., Chao, D. Y., Li, J., Wang, P.Y., Qin, F., Li, J., Ding, Y., Shi, Y., Wang, Y.U., Yang, Y., Guo, Y., & Zhu, J.K. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 63(5), 635-674.
Guo, L. M., Li, J., He, J., Liu, H., & Zhang, H. M. 2020. A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Scientific Reports, 10(1), 1383.
Hasanuzzaman, M., Nahar, K., & Fujita, M. 2013. Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic stress-plant Responses and Applications in Agriculture, 13, 169-205.
Hirabayashi, H., Sasaki, K., Kambe, T., Gannaban, R. B., Miras, M. A., Mendioro, M. S., & Ishimaru, T. 2015. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. Journal of experimental botany, 66(5), 1227-1236.
Huang, X., Zhao, Y., Li, C., Wang, A., Zhao, Q., Li, W., & Han, B. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature genetics, 44(1), 32-39.
Huther, C. M., Martinazzo, E. G., Rombaldi, C. V., & Bacarin, M. A. 2017. Effects of Flooding stress in micro-tom’tomato plants transformed with Different levels of mitochondrial sHSP23. 6. Brazilian Journal of Biology, 77, 43–51.
Imlay, J. A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annual Review of Biochemistry, 77(1), 755–776.
IPCC. .2012. Managing the risks of extreme events and disasters to advance climate change adaptation. https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf
Janská, A., Maršík, P., Zelenková, S., & Ovesná, J. 2010. Cold stress and acclimation–what is important for metabolic adjustment?. Plant Biology, 12(3), 395-405.
Jiang, N., Yu, P., Fu, W., Li, G., Feng, B., Chen, T., Li, H. Tao, L. & Fu, G. 2020. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant, Cell & Environment, 43(5), 1273-1287.
Katiyar-Agarwal, S., Agarwal, M., & Grover, A. 2003. Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant molecular biology, 51(5), 677-686.
Khan, S., Anwar, S., Ashraf, M. Y., Khaliq, B., Sun, M., Hussain, S., & Alam, S. 2019. Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants, 8(11), 508.
Kilasi, N. L., Singh, J., Vallejos, C. E., Ye, C., Jagadish, S. K., Kusolwa, P., & Rathinasabapathi, B. 2018. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in plant science, 9, 1578.
Kim, K. H., Alam, I., Kim, Y. G., Sharmin, S. A., Lee, K. W., Lee, S. H., & Lee, B. H. 2012. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnology letters, 34(2), 371-377.
Koh, S., Lee, S. C., Kim, M. K., Koh, J. H., Lee, S., An, G., & Kim, S. R. 2007. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant molecular biology, 65(4), 453-466.
Krasensky, J., & Jonak, C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608.
Kumari, S., Roy, S., Singh, P., Singla-Pareek, S., & Pareek, A. 2013. Cyclophilins: proteins in search of function. Plant signaling & behavior, 8(1), e22734.
Lafarge, T., Bueno, C., Frouin, J., Jacquin, L., Courtois, B., & Ahmadi, N. 2017. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One, 12(2), e0171254.
Li, C. 2004. Characteristic analysis of the abnormal high temperature in 2003's midsummer in Wuhan City. J. Central China Normal Univ.(Nat. Sci.), 38, 379-382.
Li, G., Zhang, C., Zhang, G., Fu, W., Feng, B., Chen, T., & Fu, G. 2020. Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis. Rice, 13(1), 1-16.
Li, X., Lawas, L. M., Malo, R., Glaubitz, U., Erban, A., Mauleon, R., & Jagadish, K. S. 2015. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant, Cell & Environment, 38(10), 2171-2192.
Liao, J. L., Zhou, H. W., Peng, Q., Zhong, P. A., Zhang, H. Y., He, C., & Huang, Y. J. 2015. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. BMC genomics, 16(1), 1-14.
Liao, J. L., Zhou, H. W., Zhang, H. Y., Zhong, P. A., & Huang, Y. J. 2014. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. Journal of Experimental Botany, 65(2), 655-671.
Lin, M. Y., Chai, K. H., Ko, S. S., Kuang, L. Y., Lur, H. S., & Charng, Y. Y. 2014. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant physiology, 164(4), 2045-2053.
Liu, G., Zha, Z., Cai, H., Qin, D., Jia, H., Liu, C., & Jiao, C. 2020. Dynamic transcriptome analysis of anther response to heat stress during anthesis in thermotolerant rice (Oryza sativa L.). International journal of molecular sciences, 21(3), 1155.
Liu, J., Hasanuzzaman, M., Wen, H., Zhang, J., Peng, T., Sun, H., & Zhao, Q. 2019. High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma, 256(5), 1217-1227.
Makino, A., & Sage, R. F. 2007. Temperature response of photosynthesis in transgenic rice transformed with ‘sense’or ‘antisense’rbc S. Plant and Cell Physiology, 48(10), 1472-1483.
Manigbas, N. L., Lambio, L. A. F., Luvina, B., & Cardenas, C.C. 2014. Germplasm innovation of heat tolerance in rice for irrigated lowland conditions in the Philippines. Rice science, 21(3), 162-169.
Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453–467.
Mittal, D., Chakrabarti, S., Sarkar, A., Singh, A., & Grover, A. 2009. Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiology and Biochemistry, 47(9), 785-795.
Miyazaki, M., Araki, M., Okamura, K., Ishibashi, Y., Yuasa, T., & Iwaya-Inoue, M. 2013. Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. Journal of Plant Physiology, 170(18), 1579-1584.
Moreno, A. A., & Orellana, A. 2011. The physiological role of the unfolded protein response in plants. Biological research, 44(1), 75-80.
Murakami, T., Matsuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, M., & Sato, Y. 2004. Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants. Molecular Breeding, 13(2), 165-175.
Muthusamy, S.K., Dalal, M., Chinnusamy, V., & Bansal, K.C. 2016. Di_erential regulation of genes coding for organelle and cytosolic clpATPases under biotic and abiotic stresses in wheat. Front. Plant Sci, 7, 929.
Najeb Barakat, M., Al-Doss, A. A., Elshafei, A. A., & Moustafa, K. A. 2011. Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Australian Journal of crop science, 5(2), 104-110.
Nakata, M., Fukamatsu, Y., Miyashita, T., Hakata, M., Kimura, R., Nakata, Y., Kuroda, M., Yamaguchi, T., & Yamakawa, H. 2017. High temperature-induced expression of rice alpha-amylases in developing endosperm produces chalky grains. Frontiers in Plant Science, 8, 2089.
Ngara, R., & Ndimba, B.K. 2014. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics, 14, 611–621.
Niu, Y., & Xiang, Y. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science, 9, 915.
Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. 2017. Transcriptional regulatory network of plant heat stress response. Trends in plant science, 22(1), 53-65.
Pareek, A., Singla, S. L., & Grover, A. 1995. Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant molecular biology, 29(2), 293-301.
Pareek, A., Sopory, S. K., & Bohnert, H. J. 2009. Abiotic stress adaptation in plants. Dordrecht, Netherlands, Springer.
Paul, P., Dhatt, B. K., Sandhu, J., Hussain, W., Irvin, L., Morota, G., & Walia, H. 2020. Divergent phenotypic response of rice accessions to transient heat stress during early seed development. Plant Direct, 4(1), e00196.
Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., & Cassman, K. G. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 101(27), 9971-9975.
Poli, Y., Basava, R. K., Panigrahy, M., Vinukonda, V. P., Dokula, N. R., Voleti, S. R., & Neelamraju, S. 2013. Characterization of a Nagina 22 rice mutant for heat tolerance and mapping of yield traits. Rice, 6(1), 1-9.
Prasad, B. D., Goel, S., & Krishna, P. 2010. In silico identification of carboxylate clamp type tetratricopeptide repeat proteins in arabidopsis and rice as putative co-chaperones of Hsp90/Hsp70. PLoS ONE, 5, e12761.
Prasad, P. V. V., Boote, K.J., Allen Jr, L. H., Sheehy, J. E., & Thomas, J. M. G. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field crops research, 95(2-3), 398-411.
Prasanth, V. V., Basava, K. R., Babu, M. S., VGN, V. T., Devi, S. J. S., Mangrauthia, S. K., & Sarla, N. 2016. Field level evaluation of rice introgression lines for heat tolerance and validation of markers linked to spikelet fertility. Physiology and molecular biology of plants, 22(2), 179-192.
Pratt, W. B., & Toft, D. O. 2003. Regulation of signaling protein function and tracking by the hsp90/hsp70-based chaperone machinery. Experimental Biology and Medicine, 228, 111–133.
Qi, Y., Wang, H., Zou, Y., Liu, C., Liu, Y., Wang, Y., & Zhang, W. 2011. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. Febs Letters, 585(1), 231-239.
Qi-Hua, L., Xiu, W., Tian, L., Jia-Qing, M., & Xue-Biao, Z. 2013. Effects of elevated air temperature on physiological characteristics of flag leaves and grain yield in rice. Chilean Journal of Agricultural Research, 73(2), 85-90.
Qin-Di, D., Gui-Hua, J., Xiu-Neng, W., Zun-Guang, M., Qing-Yong, P., Shiyun, C., Yu-Jian, M., Shuang-Xi, Z., Yong-Xiang, H., & Yu, L. 2021. High temperature-mediated disturbance of carbohydrate metabolism and gene expressional regulation in rice: a review, Plant Signaling & Behavior, 16:3, 1862564,
Qiu, Z., Zhu, L., He, L., Chen, D., Zeng, D., Chen, G., & Qian, Q. 2019. DNA damage and reactive oxygen species cause cell death in the rice local lesions 1 mutant under high light and high temperature. New Phytologist, 222(1), 349-365.
Rana, R .M., Dong, S., Tang, H., Ahmad, F., & Zhang, H. 2012. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.). Journal of experimental botany, 63(16), 6003-6016.
Reddy, P. S., Kishor, P. B. K., Seiler, C., Kuhlmann, M., Eschen-Lippold, L., Lee, J., Reddy, M. K., & Sreenivasulu, N. 2014. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: Its implications in drought stress response and seed development. PLoS ONE, 9, e89125.
Rezaul, I. M., Baohua, F., Tingting, C., Weimeng, F., Caixia, Z., Longxing, T., & Guanfu, F. 2019. Abscisic acid prevents pollen abortion under high‐temperature stress by mediating sugar metabolism in rice spikelets. Physiologia Plantarum, 165(3), 644-663.
Rodriguez-Celma, J., Rellan-Alvarez, R., Abadia, A., Abadia, J., & Lopez-Millan, A. F. 2010. Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. Journal of Proteome Research, 73, 1694–1706.
Sailaja, B., Subrahmanyam, D., Neelamraju, S., Vishnukiran, T., Rao, Y. V., Vijayalakshmi, P., & Mangrauthia, S. K. 2015. Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Frontiers in plant science, 6, 1044.
Sanchez-Reinoso, A. D., Garces-Varon, G., & Restrepo-Diaz, H. 2014. Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chilean journal of agricultural research, 74(4), 373-379.
Satake, T., & Yoshida, S. 1978. High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science, 47(1), 6-17.
Sato, H., Todaka, D., Kudo, M., Mizoi, J., Kidokoro, S., Zhao, Y., & Yamaguchi‐Shinozaki, K. 2016. The A rabidopsis transcriptional regulator DPB 3‐1 enhances heat stress tolerance without growth retardation in rice. Plant biotechnology journal, 14(8), 1756-1767.
Sato, Y., & Yokoya, S. 2008. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17. 7. Plant cell reports, 27(2), 329-334.
Scafaro, A. P., Atwell, B. J., Muylaert, S., Reusel, B. V., Ruiz, G. A., Rie, J. V., & Gallé, A. 2018. A thermotolerant variant of Rubisco activase from a wild relative improves growth and seed yield in rice under heat stress. Frontiers in plant science, 9, 1663.
Scafaro, A. P., Haynes, P.A., & Atwell, B. J. 2010. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. Journal of Experimental Botany, 61(1), 191-202.
Scafaro, A.P., Gallé, A., Van Rie, J., Carmo‐Silva, E., Salvucci, M. E., & Atwell, B. J. 2016. Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog. New Phytologist, 211(3), 899-911.
Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C., & Wang, K. 2011. Impact of high-temperature stress on rice plant and its traits related to tolerance. The Journal of Agricultural Science, 149(5), 545-556.
Shinozaki, K., & Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. Journal of experimental botany, 58(2), 221-227.
Shiraya, T., Mori, T., Maruyama, T., Sasaki, M., Takamatsu, T., Oikawa, K., & Mitsui, T. 2015. Golgi/plastid‐type manganese superoxide dismutase involved in heat‐stress tolerance during grain filling of rice. Plant biotechnology journal, 13(9), 1251-1263.
Shu, L., Lou, Q., Ma, C., Ding, W., Zhou, J., Wu, J., Feng, F., Lu, X., Luo, L., & Xu, G. 2011. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics, 11, 4122–4138.
Shu, Q. Y., Wu, D. X., & Xia, Y. 1997. The most widely cultivated rice variety ‘Zhefu 802’ in China and its geneology. Mutation Breeding Newsletter, 43, 3–5.
Singla, S. L., Pareek, A., & Grover, A. 1997. High temperature. In. PRASAD, MNV (Ed.). Plant ecophysiology.
Singla, S. L., Pareek, A., & Grover, A. 1998. Plant Hsp100 family with special reference to rice. Journal of Biosciences, 23, 337–345
Suzuki, K., Aoki, N., Matsumura, H., Okamura, M., Ohsugi, R., & Shimono, H. 2015. Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets. Plant, Cell & Environment, 38, 1255–1274.
Takehara, K., Murata, K., Yamaguchi, T., Yamaguchi, K., Chaya, G., Kido, S., & Miura, K. 2018. Thermo-responsive allele of sucrose synthase 3 (Sus3) provides high-temperature tolerance during the ripening stage in rice (Oryza sativa L.). Breeding science, 18007.
Tanamachi, K., Miyazaki, M., Matsuo, K., Suriyasak, C., Tamada, A., Matsuyama, K., & Ishibashi, Y. 2016. Differential responses to high temperature during maturation in heat-stress-tolerant cultivars of Japonica rice. Plant Production Science, 19(2), 300-308.
Tian, X., Luo, H., Zhou, H., Wu, C. 2009. Research on heat stress of rice in China: progress and prospect. Chinese Agricultural Science Bulletin, 25(22), 166-168.
Ul Haq S., Khan, A., Ali, M., Mateen Khattak, A., Gai, W. X., Zhang, H. X., Wei, A. M., & Gong Z.H. 2019. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. International Journal of Molecular Sciences. 20, 5321
Wada, H., Hatakeyama, Y., Nakashima, T., Nonami, H., Erra-Balsells, R., Hakata, M., & Nakano, H. 2020. On-site single pollen metabolomics reveals varietal differences in phosphatidylinositol synthesis under heat stress conditions in rice. Scientific reports, 10(1), 1-11.
Wahab, M. M. S., Akkareddy, S., Shanthi, P., & Latha, P. 2020. Identification of differentially expressed genes under heat stress conditions in rice (Oryza sativa L.). Molecular Biology Reports, 47(3), 1935-1948.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. 2007. Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223.
Wang, D., Li, X. F., Zhou, Z.J., Feng, X. P., Yang, W. J., & Jiang, D. A. 2010. Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant. Physiologia plantarum, 139(1), 55-67.
Wang, X., Zhang, H., Shao, L.Y., Yan, X., Peng, H., Ouyang, J.X., & Li, S.B. 2018. Expression and function analysis of a rice OsHSP40 gene under salt stress. Genes Genom., 11, 1–8.
Wang, Z. H., & Jia, Y. 2014. Development and characterization of rice mutants for functional genomic studies and breeding. Mutagenesis: exploring novel genes and pathways, 307-332.
Wang, Z. M., Li, H. X., Liu, X. F., He, Y., & Zeng, H. L. 2015. Reduction of pyruvate orthophosphate dikinase activity is associated with high temperature-induced chalkiness in rice grains. Plant Physiology and Biochemistry, 89, 76-84.
Wei, H., Liu, J., Wang, Y., Huang, N., Zhang, X., Wang, L., & Zhong, X. 2013. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 C high temperature at seedling stage. Journal of Heredity, 104(2), 287-294.
Wu, L., Taohua, Z., Gui, W., Xu, L., Li, J., & Ding, Y. 2015. Five pectinase gene expressions highly responding to heat stress in rice floral organs revealed by RNA-seq analysis. Biochemical and Biophysical Research Communications, 463(3), 407-413.
Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., & Toriyama, K. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant cell reports, 28(1), 21-30.
Wu, Y. C., Chang, S. J., & Lur, H. S. 2016. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice. Plant Production Science, 19(1), 145-153.
Xia, M. Y., & Qi, H. X. 2004. Effects of high temperature on the seed setting percent of hybrid rice bred with four male sterile lines. Hubei Agricultural Sciences, 2, 21-22.
Xiao Y., Pan Y., Luo L., Deng H., Zhang G., Tang W., & Chen, L. 2011. Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice (Oryza sativa) Rice Science, 18, 204–209.
Xiao, N., Huang, W. N., Zhang, X. X., Gao, Y., Li, A. H., Dai, Y., & Chen, J. M. 2014. Fine mapping of qRC10-2, a quantitative trait locus for cold tolerance of rice roots at seedling and mature stages. PLoS One, 9(5), e96046.
Xu, J., Xue, C., Xue, D., Zhao, J., Gai, J., Guo, N., & Xing, H. 2013. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in arabidopsis thaliana. PLoS ONE, 8, e69810.
Xue, D. W., Jiang, H., Hu, J., Zhang, X. Q., Guo, L. B., Zeng, D. L., & Qian, Q. 2012. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings. Plant physiology and biochemistry, 61, 46-53.
Yamakawa, H., Hirose, T., Kuroda, M., & Yamaguchi, T. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology, 144(1), 258–277.
Yamanouchi, U., Yano, M., Lin, H., Ashikari, M., & Yamada, K. 2002. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences, 99(11), 7530-7535.
Yamori, W., Kondo, E., Sugiura, D., Terashima, I., Suzuki, Y., & Makino, A. 2016. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6/f complex. Plant, Cell & Environment, 39(1), 80-87.
Yan, H., Zhang, B., Zhang, Y., Chen, X., Xiong, H., Matsui, T., & Tian, X. 2017. High temperature induced glume closure resulted in lower fertility in hybrid rice seed production. Frontiers in Plant Science, 7, 1960.
Yang, H. C., Huang, Z.Q., Jiang, Z. Y., & Wang, X. W. 2004. High temperature damage and its protective technologies of early and middle season rice in Anhui province. Journal of Anhui Agricultural Sciences, 32(1), 3-4.
Yang, S., Hao, D., Jin, M., Li, Y., Liu, Z., Huang, Y., & Su, Y. 2020. Internal ammonium excess induces ROS-mediated reactions and causes carbon scarcity in rice. BMC plant biology, 20(1), 1-15.
Ye, C., Tenorio, F. A., Argayoso, M.A., Laza, M. A., Koh, H. J., Redoña, E. D., & Gregorio, G. B. 2015. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC genetics, 16(1), 1-10.
Yoshida, S. 1981. Fundamentals of Rice Crop Science, International Rice Research Institute, Los Baños. Laguna.
Zhang, G. L., Chen, L. Y., Xiao, G. Y., Xiao, Y. H., Chen, X. B., & Zhang, S. T. 2009. Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L.) using SSR markers. Agricultural Sciences in China, 8(4), 482-487.
Zhang, X., Rerksiri, W., Liu, A., Zhou, X., Xiong, H., Xiang, J., & Xiong, X. 2013. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Gene, 530(2), 185-192.
Zhao, C., Xie, J., Li, L., & Cao, C. 2017. Comparative transcriptomic analysis in paddy rice under storage and identification of differentially regulated genes in response to high temperature and humidity. Journal of Agricultural and Food Chemistry, 65(37), 8145–8153.
Zhao, L., Lei, J., Huang, Y., Zhu, S., Chen, H., Huang, R., & Yan, S. 2016. Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breeding science, 15084.
Zhao, Q., Zhou, L., Liu, J., Du, X., Asad, M.A., Huang, F., Pan, G., & Cheng, F. 2018. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiology and Biochemistry, 122, 90–101.