ارزیابی رقم های مختلف گندم نان از نظر برخی خصوصیات فیزیولوژیک، نیاز حرارتی و عملکرد محصول در منطقه کرمانشاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه ایران

2 مرکز تحقیقات غلات، دانشگاه رازی، کرمانشاه، ایران

3 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران

چکیده

مقدمه: افزایش سریع جمعیت جهان و نیاز به افزایش تولیدات کشاورزی و از سویی دیگر تغییرات سریع شرایط آب و هوایی از چالش­های مهم پیش‎رو جهان در سال­های آتی می­باشد. گندم به عنوان مهم­ترین گیاه خانواده غلات، نقش بسیار مهمی در امنیت غذایی جهان در حال حاضر و آینده دارد. بنابراین تولید رقم­های جدید و پرتولید گندم و انتخاب دقیق رقم­های مناسب جهت کشت در مناطق مختلف آب و هوایی، از اولویت­های تحقیقاتی آینده می­باشند.
مواد و روش‌ها: این تحقیق با هدف بررسی نحوه واکنش رقم­های مختلف گندم نان از نظر عملکرد و اجزای آن و همچنین مطالعه نیاز حرارتی و برخی از صفات فیزیولوژیک مرتبط با تحمل به سرما در ارقام مختلف گندم نان انجام شد. این تحقیق به صورت دو آزمایش مستقل در مزرعه تحقیقاتی پردیس کشاورزی و منابع طبیعی دانشگاه رازی کرمانشاه اجرا گردید. آزمایش اول به صورت طرح بلوک‌های کامل تصادفی و با هدف بررسی عملکرد  و اجزاء آن در سه تکرار روی 12 رقم گندم نان از تیپ­های مختلف رشدی شامل نورستار، زرین، کویر، باز، سیوند، الوند، پیشگام، پیشتاز، اروم، شهریار، بهار و پارسی اجرا شد. آزمایش دوم به صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی و به منظور مطالعه مقاومت به سرما رقم­های مختلف گندم در سه تکرار انجام شد. در این آزمایش 12 رقم گندم نان به عنوان فاکتور اول و زمان نمونه‌برداری به عنوان دومین فاکتور در سه سطح (اواخر دی‌ماه، اواخر بهمن‌ماه و اواخر اسفند‌ماه مورد بررسی قرار گرفتند.
یافته‌ها: نتایج این پژوهش نشان داد که ارقام بهاره سیوند و پارسی، با بالاترین سرعت رشد گیاه در مراحل مختلف نمو، به ترتیب با 5170 و 5100 کیلوگرم در هکتار، بیش­ترین و رقم زمستانه نورستار با کم­ترین سرعت رشد گیاه در مراحل مختلف نمو، با 2230 کیلوگرم در هکتار، کم‌ترین مقدار عملکرد دانه را داشتند. همبستگی بین عملکرد دانه با نیاز حرارتی تا گلدهی (R=-0.86) و رسیدگی فیزیولوژیک (R=-0.87)، به صورت منفی و معنی‌دار بود. بنابراین ارقام دارای عملکرد دانه کم­تر، دارای نیاز حرارتی بیش­تری بودند و بررسی نیاز حرارتی ارقام مورد بررسی تا مرحله گلدهی نشان داد که ارقام بهاره به طور متوسط نیاز حرارتی کم‌تری نسبت به ارقام زمستانه دارند. تجمع قندهای محلول در طوقه ارقام زمستانه و بینابین در طول فصل زمستان نسبت به ارقام بهاره بیش­تر بود. روند تجمع قندهای محلول در طوقه بوته‌های گندم در طول فصل زمستان به صورت نزولی بود، به طوری‌که در ابتدای زمستان، طوقه دارای محتوای قند بیش­تری نسبت به اواسط و اواخر زمستان بود. ارقام زمستانه و بینا‌بین به طور متوسط دارای سبزینگی برگ و حداکثر کارآیی فتوشیمیایی فتوسیستم II بیش­تری نسبت به ارقام بهاره بودند.
نتیجه‌گیری: با توجه به نتایج به دست آمده در منطقه مورد مطالعه، به طور میانگین رقم­های زمستانه و بینا‌بین نسبت به رقم­های بهاره از نظر صفات فیزیولوژیک مرتبط با تحمل سرما برتر بودند. اما با توجه به عملکرد دانه به دست آمده در این تحقیق، در کرمانشاه و مناطق آب و هوایی مشابه بین رقم­های کشت شده، احتمالاً کشت رقم­های بهاره نسبت به دو تیپ رشدی دیگر بیش­تر قابل توصیه است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of different bread wheat cultivars in some physiological characteristics, thermal requirement and crop yield in Kermanshah region

نویسندگان [English]

  • Negin Rezaei 1
  • Mohsen Saeidi 1 2
  • Shahryar sasani 3
  • Saeid Jalali Honarmand 1 2
  • Mohammad Eghbal Ghobadi 1 2
1 Department of Plant Production and Genetics, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
2 Department of Plant Production and Genetics, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran|Cereal Research Center, Razi University, Kermanshah, Iran
3 Crops and Horticultural Sciences Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
چکیده [English]

Introduction: The rapid increase in the world population and the need to increase agricultural production, and on the other hand, the rapid change of climate conditions, are the significant challenges facing the world in the coming years. Wheat, the most important plant in the cereal family, plays a vital role in the world's food security now and in the future. Therefore, producing new cultivars with high yields and carefully selecting cultivars suitable for cultivation in different climatic zones are important future research priorities.
Materials and methods: This study investigated the reaction of different bread wheat cultivars regarding yield and its components. It also aimed to study the growing degree days (GDD) and some physiological traits related to cold tolerance in different bread wheat cultivars. This study was conducted as two independent experiments during the 2013-14 cropping year at the research field, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran. The first experiment was a randomized complete block design with three replications. Treatments included 12 bread wheat cultivars (Norstar, Zarin, Kavir, Baz, Sivand, Alvand, Pishgam, Pishtaz, Orum, Shahryar, Bahar, and Parsi). The second experiment was a factorial experiment in a randomized complete block design with three replications. In this experiment, 12 bread wheat cultivars were evaluated as the first factor and sampling times as the second factor in three levels: early January, early February, early March.
Results: The results of this study showed that Sivand and Parsi spring cultivars with the highest plant growth rate in different stages of development, with 5170 and 5100 kg/ha, respectively, and Norstar winter cultivar with the lowest plant growth rate in various stages of development, with 2230 kg/ha, had the lowest value of grain yield. The correlation between grain yield, growing degree days requirement to flowering, and physiological maturity were negatively significant. Cultivars with lower grain yield had higher growing degree day’s requirements. Examination of the growing degree days requirement of cultivars up to the flowering stage showed that, on average, spring cultivars had lower growing degree day requirements than winter cultivars. The accumulation of soluble sugars in the crown of winter and intermediate cultivars during winter was higher than spring cultivars. The accumulation of soluble sugars in the wheat crown was downward during the winter, so at the beginning of winter, the crown had a higher sugar content than in the middle and late winter. Winter and intermediate cultivars, on average, had higher leaf greenness and maximum photochemical efficiency of photosystem II than spring cultivars.
Conclusion: According to the results obtained in the study area, on average, winter and intermediate cultivars were superior to spring cultivars in terms of physiological traits related to cold tolerance. But, due to the obtained seed yield. However, according to the grain yield obtained in this study, spring cultivars are more recommended among cultivated cultivars than the other two growth types in Kermanshah and similar climate zones.

کلیدواژه‌ها [English]

  • Growing Degree days
  • Cold
  • Crown
  • Maximum Efficiency of Photosystem II
  • Soluble sugars
Abdoli, M., & Esfandiari, E. 2014. Effect of zinc foliar application on the quantitative and qualitative yield and seedlings growth characteristics of bread wheat (cv. Kohdasht). Iranian Journal of Dryland Agriculture, 3(1), 77-90. [In Persian].
Ahmadi, N., Jasemi, S. Sh., & Aghayari, F. 2019. Evaluation of cold stress tolerance and some agronomic characteristics of bread wheat promising lines. Seed and Plant Production, 35(1), 83-101. [In Persian].
Ahmed, M., & Farooq, S. 2013. Growth and physiological response of wheat cultivares under various planting windows. The Journal of Animal and Plant Sciences, 23(5), 1407-1414.
Ahmed, M., Hassan, F., Asim, M., Aqeel Aslam, M., & Nasib, M. 2010. Correlatin of phototermal quotient with spring wheat yield. African Journal of Biotechnology, 9(49), 7869-7852.
Annikki, W., & Pavla, E. T. 2006. Molecular control of cold acclimation in trees. Physiologia Plantarum, 127, 167-181.
AOAC. 1995. Officinal method of analysis (16th), Arlington. VA., USA: AOAC.
Askary Kelestanie, A. R., Asadi, A., Gholi Mirfakhraii, R., & Abasi, A. R. 2016. Evaluation of some bread wheat genotypes in the reproductive stage under pattern chilling stress. Journal of Crop Breeding, 8(17), 77-86. [In Persian].
Atici, O., & Nalbantoglu, B. 2003. Antifreeze proteins in higher plants. Phytochemistry, 64, 1187-1196.
Ball, S., Qian, Y., & Stushnoff, C. 2002. Soluble carbohydrates in two buffalo grass cultivars with contrasting freezing tolerance. Journal of the American Society for Horticultural Science, 127(1), 45-49.
Behi, M. 2012. Evaluation of genetic variation of attributes associated with freezing tolerance in barley using molecular markers. MSc thesis, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. 107 p. (In Persian with English abstract).
Breton, G., Danyaluk, J., Ouellet, F., & Sarhan, F. 2000. Biotechnological application of plant freezing associated proteins. Biotechnology Annual Review, 6, 57-82.
Cheong, B. E., Yu, D., Martinez-Seidel, F., Ho, W. W. H., Rupasinghe, T.W.T., Dolferus, R., & Roessner, U. 2022. The Effect of cold stress on the root-specific lipidome of two wheat varieties with contrasting cold tolerance. Plants, 11, 1364-1393.
Dorffling, K., Dorffling, H., & Luck, E. 2009. Improved frost tolerance and winter hardiness in proline overaccumulating winter wheat mutants obtained by in vitro-selection is associated with increased carbohydrate, soluble protein and abscisic acid (ABA) level. Euphytica, 165, 545-556.
Ehdaie, B., Hall, A. E., Farquhar, G. D., Ngvyens, H. T., & Waines, J. G. 1991. Water use efficiency and carbon isotope discrimination in wheat. Crop Science, 31, 1282-88.
Gholizadeh, A., Dehghani, H., Amini, A., & Akbarpour, O. A. 2018. Identification of salinity tolerant genotypes and study on relationships between yield and its components in bread wheat. Cereal Research, 8(3), 321-332. [In Persian].
Gizaw, Sh. A., Garland-Campbell, K., & Carter, A. H. 2016. Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions. Field Crops Research, 196, 168-179.
Hajiboland, R., & Habibi, G. H. 2011. Contrastive responses of spring and winter wheat cultivars to chilling and acclimation treatments. Acta Agriculturae Slovenica, 97(3), 233-239.
Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P., Shankar, T., Bhatt, R., Kumar, Chaki, A., Sabagh, E.L., & Islam, T. 2021. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy, 11, 241-274.
Javadi, H., Rashed Mohasel, M. H., Zamani, G. R., Azari Nasr Abadi, E., & Musavi, G. R. 2007. Effect of plant density on growth indices in four grain sorghum cultivars. Iranian Journal of Field Crops Research, 4, 265-253. [In Persian].
Karimi, M. M., & Siddique, K. H. M. 1991. Crop growth and relative growth rates of old and modern wheat cultivars. Australian Journal of Agricultural Research, 42(1), 13-20.
Kerepesi, I., Bányai-Stefanovits, E., & Galiba, G. 2004. Cold acclimation and abscisic acid induced alterations in carbohydrate content in calli of wheat genotypes differing in frost tolerance. Plant Physiology, 161, 131-133.
Kirby, E. J. M., Appleyard, M., & Fellowes, G. 1985. Variation in development of wheat and barley in response to sowing date and variety. Journal of Agricultural Science, 104, 383-396.
Kirby, E. J. M., Spink, J. H., Frost, D. L., Sylvester-Bradley, R., Scott, R. K., Foulkes, M. J., Clare, R. W., & Evans, E. J. 1999. A study of wheat development in the field: analysis by phases. European Journal of Agronomy, 11, 63-82.
Kocheki, A. 2002. Crop Production in Dry Regions. Jahad Daneshgahy of Mashhad University, Mashhad, Iran. 202 p. [In Persian].
Koppensteinera, L. J., Kaula, H. P., Piephob, H. P., Bartac, N., Euteneuerd, P., Bernase, J., Klimek-Kopyraf, A., Gronauerc, A., & Neugschwandtnera, R. W. 2022. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. European Journal of Agronomy, 140, 126591.
Kranner, I., Beckett, R. P., Wornik, S., Zorn, M., & Pfeifhofer, H. W. 2002. Revival of a resurrection plant correlates with its antioxidant’s status. Plant Journal, 31, 13-24.
McKersie, B. D., & Lesheim, Y. 1994. Stress and Stress Coping in Cultivated Plants. Springer Netherlands Publishers. 256 p.
Mirmohammadi Mobidi, S. A. M., & Torkesh Esfahani, S. 2004. Management of cold and freezing stresses of crops and orchards. Jahad Daneshgahy of Isfahan University of Technology (IUT), Isfahan, Iran. 330 p. [In Persian].
Nedjadsadeghi, L., Maali Amiri, R., Zeynali Kkanghah, H., Sadeghzadeh, B., & Ramezanpour, S. S. 2014. Evaluation of some cold-induced responses in bread and durum wheat plants. Modern Genetic Journal, 9(3), 353-362. [In Persian].
 Nejadsadeghi, L., Maali-Amiri, R., & Zinali khangah, H. 2019. Comparison of carbohydrates and delta12 and delta15 genes expression in tetra and hexa ploid wheat under cold acclimation and cold stress. Journal of Plant Productions, 42(3), 387-400. [In Persian].
Rajabi, R., & Pourdad, S. S. 2011. A study on cold resistance in safflower varieties and lines by physiological and biochemical indices. Journal of Plant Productions, 33(2), 1-14. [In Persian]
Russelle, M.P., Wilhelm, W.W., Olson, R.A., & Power, J.F. 1984. Growth analysis based on degree days. Crop Science, 24, 28–32.
Saeidi, M., Abdoli, M., & Elyasi, P. 2019. Cold tolerance evaluation in some bread wheat genotypes in seedling stage under laboratory conditions. Journal of Wheat Research, 2(1), 35-52. [In Persian].
Sarhadi, E., Mahfoozi, S., Majidi Hervan, E., & Amini, A. 2012. Determination of vernalization requirement and cold tolerance in two bread wheat cultivars. Iranian Journal of Crop Sciences, 14(1), 29-43. [In Persian].
Sasani, Sh., Tavakkol Afshari, R., & Mahfoozi, S. 2013. Low-temperature acclimation and the correlation of vernalization requirement with accumulation of some compatible solutes and physiological mechanisms in bread wheat. Iranian Journal of Field Crop Science, 44(2), 327-345. [In Persian].
Sasani, Sh., Tavakkol Afshari, R., Mahfoozi, S., & Tervasekis, B. 2012. The relationships among the vernalization response, carbohydrate accumulation, developmental stages and frost tolerance in bread wheat cultivars. Iranian Journal of Field Crop Science, 43(2), 281-293. [In Persian].
Siosemardeh, A., Mohammadi, K., Roohi, E., Aghaalikhani, M., & Mokhtasi Bidgoli, A. 2010. Physiological responses of different wheat genotypes to cold stress. Journal of Crop Production, 2(4), 93-112. [In Persian].
Xu, H. G., Liu, G. J., Liu, G. T., Yan, B. F., Duan, W., & Wang L. J. 2014. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species. BMC Plant Biology, 14, 156-163.
Yordanova, R. Y., & Popova, L. P. 2007. Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. General and Applied Plant Physiology, 33(3-4), 155-170.
Zeinali, E., & Soltani, A. 2001. Detemination cardinal temperature in wheat. Research Report, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Gorgan, Iran. [In Persian]
Zobayed, S. M. A., Afreen, F., & Kozai, T. 2005. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s Wort. Plant Physiology and Biochemistry, 43, 977-984.