Cassman, K. G., Dobermann, A., Walters, D. T., & Yang, H. 2003. Meeting cereal demand while 889 protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 28, 315-358. http://dx.doi.org/10.1146/annurev.energy.28.040202.122858
Colasuonno, P., Marcotuli, I., Gadaleta, A., & Soriano, J. M. 2021. From genetic maps to QTL cloning: an overview for durum wheat. Plants, 10 (2), 315-326. 10.3390/plants10020315
Darvasi, A., & Soller, M. 1997. A simple method to calculate resolving power and confidence interval of QTL map location. Genetics. 27, 125–132. 10.1023/A:1025685324830
Desiderio, F., Zarei, L., Licciardello, S., Cheghamirza, K., Farshadfar, E., Virzi, N., Fabiola Sciacca, F., Bagnaresi , P., Battaglia , R., Guerra , D., Palumbo , M., Luigi , C., Mazzucotelli , E. 2019. Genomic Regions from an Iranian Landrace Increase Kernel Size in Durum Wheat. Frontier Plant Science, 10, 448-451. 10.3389/fpls.2019.00448
Fan, X., Liu, X., Cui, F, Zhao, C.H., Zhao, C. Tong, Y., & Li, J. 2015. QTLs for fag leaf size and their infuence on yield-related traits in wheat (Triticum aestivum L.). Molecular Breeding, 35, 1-24. 10.1007/s11032-015-0205-9
Farokhzadeh, S., Fakheri, B.A., Mahdi Nezhad, N., Tahmasebi, S., & Mirsoleimani, A. 2019. Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat (Triticum aestivum L.). Physiology Molecular and Biology Plants, 25 (4), 975–990. 10.1007/s12298-019-00670-8
Gauley, A., & Boden, S. A. 2019. Genetic pathways controlling inflorescence architecture and development in wheat and barley. Journal Integrative Plant Biology, 61(3), 296–309. 10.1111/jipb.12732
Giunta, F., DeVita, P., Mastrangelo, A. M., Sanna, G., & Motzo, R. 2018. Environmental and genetic variation for yield-related traits of durum wheat as affected by development. Frontier Plant Science, 9 (8), 1-19. 10.3389/fpls.2018.00008
Graziani, M., Maccaferri, A. M., Royo, A. C., Salvatorelli, A., & Tuberosa, R. 2014. QTL dissection of yield components and morpho-physiological traits in a durum wheat elite population tested in contrasting thermo-pluviometric conditions. Crop and Pasture Science, 65, 80–95. 10.1071/CP13349
Huang, S., Sun, L., Hu, X., Wang, Y., Zhang, Y., Nevo, E., Peng, J., & Sen, D. 2018. Associations of canopy leaf traits with SNP markers in durum wheat (Triticum turgidum L. durum (Desf.)). PLoS ONE, 13 (10), 1-14. https://doi.org/10.1371/journal.pone.0206226
International Grains Council (IGC). 2020. World grain statistics 2016 [Online]. Available: 1051 https://www.igc.int/en/subscriptions/subscription.aspx [Accessed 05/21/2020].
Joehanes, R., & Nelson, J. 2008. QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics, 24 (23), 2788–2789.
Jia, H., Wan, H., Yang, S., Zhang, Z., Kong, Z., Xue, S., Zhang., L., & Ma., Zh. 2013.Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Tagtheoretical & Applied Geneticstheoretische Und Angewandte Genetik, 126, 2123–2139. 10.1007/s00122-013-2123-8
Li, J.H., Li, G.H., Zhang, Y.G., Luo, Q.R., Yang, C.D., Wang, S.H., Zhenghui, L., Qiangsheng, W., & Yanfeng, D. 2009. Effects of precise and quantitative cultivation on plant type and yield of rice in high altitude and cold ecological area. Scientia Agricultural Sinica, 42, 3067–3077. Corpus ID: 127220130
Liu, Y., Tao, Y., Wang, Z., Guo, Q., Wu, F., Yang, X., Deng, M., Ma, J., Chen, G., Yuming, W., & Zheng, Y. 2018. Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Molecular Breeding, 38, 11-18. https://doi.org/10.1007/s11032-017-0766-x
Maccaferri, M., Ricci, A., Salvi, S., Milner, S. G., Noli, E., Martelli, P. L., Rita Casadio, R., Akhunov, E., Scalabrin, S., Vendramin, V., Ammar, K., Blanco, A., Desiderio, F., Distelfeld, A., Dubcovsky, J., Fahima, T., Faris,J., Korol, A., Massi, A., Maria, A., Mastrangelo, A., Morgante, M., Pozniak, C., N'Diaye, A., Xu, S., & Tuberosa, R. 2015. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnology, 13, 648–663. 10.1111/pbi.12288
Maccaferri, M., Sanguineti, M. C., Corneti, S., Ortega, J. L. A., BenSalem, M., Bort, J., DeAmbrogio, E., 2008. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics, 78 (1), 489–511. 10.1534/genetics.107.077297
Me´rida-Garc´ıa, R., Liu, G., He, S., GonzalezDugo, V., Dorado, G., Ga´lvez, S., Ignacio Solís, L., Zarco-Tejada, P. J., Reif, J. C., & Hernandez, P. 2019. Genetic dissection of agronomic and quality traits based on association mapping and genomic selection approaches in durum wheat grown in southern Spain. PLoS ONE, 14(2), 1-24. https://doi.org/10.1371/journal.pone.0211718
Nigro, D., Fortunato, S., Giove, S.L., Mazzucotelli, E., & Gadaleta A. 2020. Functional Validation of Glutamine syntheses and Glutamate Synthase Genes in Durum Wheat near Isogenic Lines with QTL for High GP. International Journal Molecular Science, 21 (9253), 1-17. 10.3390/ijms21239253
Nyquist, W.E. 1991. Estimation of Heritability and Prediction of Selection Response in Plant Populations. Critical Reviews in Plant Science, 10, 235-322. https://doi.org/10.1080/07352689109382313
Roncallo, P., Pavan, F. Akkiraju, C., Gerardo, L. Viviana, C., & Echenique, C. 2018. QTL mapping and analysis of epistatic interactions for grain yield and yield-related traits in Triticum turgidum L. var. durum. Euphytica, 213, 277-297. 10.1007/s10681-017-2058-2
Sabouri, H., Alegh, S.M., Sahranavard, N., & Sanchouli, S. 2022. SSR linkage maps and identification of QTL controlling morpho-phenological traits in two Iranian wheat RIL populations. BioTechnology, 11 (32), 1-20. 10.3390/biotech11030032
SAS, Institute. 2008. Statistical Analytical Systems SAS/STAT User’s Guide. Version 8(2), SAS Institute Inc., Cary.
Sen, S., & Churchill, G. A. 2001. A statistical framework for quantitative trait mapping. Genetics, 159, 371–387. 10.1093/genetics/159.1.371
Wang, J., Liu, H., Zhao, C., Tang, H., Mu, Y., Xu, Q., Xu, Q., Deng, M., Jiang, Q., Chen, G., Qi, P., Wang, J., Jiang, Y., Chen, Sh., Wei, Y., Zheng,Y., Lan, X., & Ma, J. 2022. Mapping and validation of major and stable QTL for flag leaf size from tetraploid wheat. Plant Genome, 15, 1-17. https://doi.org/10.1002/tpg2.20252
Wang , T., Su ,N., Lu , J., Zhang , R., Sun , X., & Weining, S. 2023. Genome-wide association studies of peduncle length in wheat under rain-fed and irrigating field conditions. Journal Plant Physiology, 280-292. 10.1016/j.jplph.2022.153854
Yan, X., Wang, S., Yang, B., Zhang, W., Cao, Y., Shi, Y., Sun, D., & Jing, R. 2020. QTL mapping for flag leaf related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat. PLoS ONE, 15 (3), 1-15. 10.1371/journal.pone.0229912
Yu, H., Liu, Y., Zou, Z., Sun, X., Zhang, J., Song, Sh., Lijie Wang, L., Qin, R., Sun, H., Cui, F., Zhao, Ch & Shi, S. 2022. QTL detection for internode diameter and its association with yield-related traits in wheat. Cereal Research Communications, 1-18. 10.1007/s42976-022-00283-0
Zarei, L. 2011. Mapping QTLs related to drought tolerance in durum wheat (Triticum turgidum var durum. (Ph.D. Thesis). Razi University.
Zhou, Y., Conway, B., Miller, D., Marshall, D., Cooper, A., Murphy, P., & Costa, J. 2017. Quantitative trait loci mapping for spike characteristics in hexaploid wheat. The Plant Genome, 10 (2), 1-16. 10.3835/plantgenome2016.10.0101