مقایسه پروفایل پروتئینی گندم ریژاو بر اساس تغییرات بازه پی اچ

نوع مقاله : مقاله پژوهشی

نویسنده

گروه علوم کشاورزی، دانشگاه پیام‌نور، تهران، ایران.

چکیده

مقدمه: گندم از مهم­ترین غلات و قوت غالب مردم جهان است این گیاه منبع مهمی از کربوهیدرات بوده و دارای فیبر زیادی می­باشد. رقم ریژاو سازگار با شرایط کشت دیم و آبیاری تکمیلی در مناطق معتدل- ایران می­باشد و می‌تواند نقش مهمی در افزایش تولید و پایداری عملکرد گندم دیم ایفا کند. رقم ریژاو از کیفیت نانوایی بالایی برخوردار است که موجب افزایش کیفیت نان و کاهش ضایعات می­شود. الکتروفورز دو بعدی در واقع ترکیبی از ایزوالکتریک فوکوسینگ[1] در بعد اول و SDS-PAGE در بعد دوم است که امکان جداسازی پروتئین­ها را بر اساس بار الکتریکی و وزن ملکولی فراهم می­کند.
مواد و روش‌ها: در این مطالعه از رقم گندم ریژاو جهت مطالعه، شناسایی وضوح و تمرکز تصویر (تفاوت) لکه­های پروتئینی در دو بازه مختلف ایزوالکتریک با پی اچ خطی 4 تا 7 و پی اچ غیرخطی 3 تا 10 استفاده گردید. برای این منظور بذر گندم نان رقم ریژاو از معاونت مؤسسه تحقیقات کشاورزی دیم سرارود تهیه شد و در گلخانه دانشگاه پیام­نور و آزمایشگاه بخش پروتئین مرکز تحقیقات بیولوژی پزشکی دانشگاه علوم پزشکی کرمانشاه و در شرایط نرمال (طبیعی) در گلدان کشت گردید. در مدت آزمایش، دوره روشنایی 14 ساعت بود و برای تنظیم این نور از روشنایی طبیعی و در حد نیاز از لامپ­های فلورسانت استفاده شد. دمای روزانه حدوداً 20 درجه سلسیوس و دمای شبانه نیز حدود 10 تا 12 درجه سلسیوس انتخاب گردید. نهایتاً نمونه­های برگی جهت استفاده در استخراج پروتئین برای الکتروفورز دو بعدی تهیه و پروتئین کل آن استخراج گردید.
یافته‌ها: نتایج حاصل نشان دهنده تغییرات وضوح پروتئین­های بیان شده در دو پی اچ 4 تا 7 خطی و 3 تا 10 غیر خطی متفاوت بود به عبارت دیگر در هر دو بازه پی اچ لکه­های پروتئینی امکان تشکیل داشتند. اگر چه وضوح تصویر و تفکیک لکه­های پروتئینی در پی اچ 3 تا 10 غیر خطی به لحاظ وسیع تر بودن دامنه پی اچ بسیار مطلوب و مناسب بود، حرکت پروتئین­ها در الکتروفورز دوبعدی نشان داد که این ملکول­ها علاوه بر تفاوت نقطه ایزوالکتریک pI[2]، دارای رفتار و عملکرد قابل توجهی در شرایط SDS-PAGE و الکتروفورز دوبعدی هستند که در روش معمول SDS-PAGE دیده نمی­شود. به عبارت دیگر در الکتروفورز دو بعدی پروتئین­ها بر اساس بار الکتریکی و نیز وزن مولکولی جدا می­شوند ولی در الکتروفورز یک بعدی بر اساس وزن مولکولی تفکیک می­شوند به همین دلیل ممکن است مجموعه­ای از پروتئین­ها دارای وزن مولکولی یکسان باشند.
نتیجه‌گیری: به طور کلی این درجه از تنوع پروتئینی و رفتار نسبتاً ناهمگون الکتروفورز پروتئین­های حاصل از برگ گندم رقم ریژاو که اولین مطالعه با استفاده از تکنیک الکتروفورز دوبعدی در این رقم می­باشد، نشان داده شده است، قابل تأمل و نیازمند مطالعات بیشتر در این گونه تحقیقات در سایر گونه­های مرتبط می­باشد. نتایج بدست آمده از مطالعه الکتروفورز دوبعدی در این مطالعه می­تواند راهگشای مطالعات پروتئومیکی در آینده می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of the Protein Profile of Rejaw Wheat based on Changes in the pH Range

نویسنده [English]

  • Mehdi Kakaei
Associate Professor, Department of Agricultural Sciences, Payam Noor University, Tehran-Iran.
چکیده [English]

Introduction: Today, wheat is grown on more land area than any other commercial crop and continues to be the most important food grain source for humans. Rejaw cultivar is adaptable to the conditions of rainfed cultivation and supplementary irrigation in the cold regions of Iran. Of course, it can play an essential role in increasing and sustaining the yield of rainfed wheat. Regarding the quality of the resulting flour, Rejaw has a high quality, increasing the bread quality and reducing bread waste. Two-dimensional electrophoresis is a combination of isoelectric focusing (IEF) in the first dimension and SDS-PAGE in the second dimension, which allows the separation of proteins based on electrical charge and molecular weight.
Materials and methods: In this study, Rejaw wheat variety was used to investigate the changes of protein spots in two different ranges of linear pH 4 to 7 and nonlinear pH 3 to 10. For this purpose, bread wheat seed sample of Rejaw cultivar obtained from the Dryland Agricultural Research Institute (Sararoud branch), Kermanshah, Iran, was grown in a greenhouse under normal conditions in a pot; during the experiment, the lighting period was 14 hours, and natural lighting and fluorescent lamps were used to adjust this light. The daily temperature was about 20 degrees Celsius and the night temperature was about 10 to 12 degrees Celsius. Finally, leaf samples were used in protein extraction to perform two-dimensional electrophoresis, and their total protein was extracted. The experiment was carried out in the greenhouse of Payam-Noor University and the protein department laboratory of the Medical Biology Research Center of Kermanshah University of Medical Sciences.
Results: The results showed the changes of the expressed proteins in two different pH 4 to 7 linear and 3 to 10 non-linear. Although the resolution of the image and the separation of the protein spots at pH 3 to 10 were nonlinear due to the wider pH range, the movement of the proteins in two-dimensional electrophoresis showed that these molecules, in addition to the pI difference, have a solvable behavior. Attention in the conditions of SDS-PAGE and two-dimensional electrophoresis, which is not seen in the usual SDS-PAGE method. In other words, in two-dimensional electrophoresis, proteins are separated based on electric charge and molecular weight but in one-dimensional electrophoresis, they are separated based on molecular weight. For this reason, a set of proteins may have the same molecular weight.
Conclusion: However, this degree of protein diversity and relatively heterogeneous electrophoretic behavior of the proteins obtained from the leaves of Rejaw cultivar, which was apparently only shown in this study with two-dimensional electrophoresis, is remarkable and requires more studies in other related species. The results obtained from the two-dimensional electrophoresis study in this study can open the way for proteomic studies in the future.

کلیدواژه‌ها [English]

  • Keywords: Wheat
  • leaf
  • linear and non-linear pH
  • IPG strip
Adhikari, B.M., Bajracharya, A. & Shrestha, A.K. 2016. Comparison of nutritional properties of Stinging nettle (Urtica dioica) flour with wheat and barley flours. Food Science and Nutrition, 4, 119-124.
Bangaru, N.T. & Sarda, M.N. 2018. Two-Dimensional Gel Electrophoresis Seed Proteome Map of Pigmented and Non Pigmented Sorghum Genotypes (Sorghum bicolor L. Moench). European Journal of Experimental Biology, 8 (6), 34-44. doi: 10.21767/2248-9215.100075.
Beyene, B., Haile, G., Matiwos, T. & Deribe, H. 2016. Review on proteomics technologies and its application for crop improvement. Innovative Systems Design and Engineering, 7, 7-15.
Buts, K., Michielssens, S., Hertog, M.L.A.T.M., Hayakawa, E., Cordewener, J., America, A.H.P., Nicolai, B.M. & Carpentier, S.C. 2014. Improving the identification rate of data independent label-free quantitative proteomics experiments on non-model crops: A case study on apple fruit. Journal of Proteomics, 105, 31-45.
Chevalier, F., Martin, O., Rofidal, V., Devauchelle, A.D., Barteau, S., Sommerer, N. & Rossignol, M. 2004. Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics, 4, 1372-1381.
Damerval, C., Zivy, M., Granier, F. & Devienne, D. 1989. Two dimensional electrophoresis in plant biology. Advanced Electrophoresis, 2, 263-340.
Haghparast, R., Rajabi, R., Roustaii, M. & Aghaee Sarbarzeh, M. 2013. Rejaw, A New Bread Wheat Cultivar for Rainfed and Supplemental Irrigation in Moderate Cold Regions of Iran. Seed and Plant Journal, 29 (2), 401-403. DOI: 10.22092/spij.2017.111166.
Kakaei, M. 2017. c- Reaction of bean proteome due to the feeding of two-spotted tartan mite Tetranychus urticae Koch with the approach of proteomics technique. Journal of the Entomology Society of Iran, 3, 305 - 320. [In Persian].
Kakaei, M. 2022. Plant Proteomics and Industrial Oil Plants. Agrotechniques in Industrial Crops. Agrotechniques in Industrial Crops (ATIC), 2 (4), 213-220.
Kakaei, M. 2017. b- Changes in alfalfa proteome against the stress caused by the feeding of spotted aphid Monell Therioaphis Trifolii with the help of two-dimensional electrophoresis technique. Applied Biology, 4, 111-125. [In Persian].
Kakaei M. 2017. a- Application of two-dimensional electrophoresis in identifying sources of resistance and susceptibility to yellow rust disease (Puccinia striiformis f. sp. tritici West.) in bread wheat (Triticum aestivum L). Journal of Biotechnology in Agriculture, 9, 1-11. [In Persian].
Kang, S., Chen, S. & Dai, S. 2010. Proteomics characteristics of rice leaves in response to environmental factors. Frontiers in Biology, 5, 246–254. https://doi.org/10.1007/s11515-010-0027-4.
Komatsu, S. & Zang, X. 2007. A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry, 68 (4), 426-437. https://doi.org/10.1016/j.phytochem.2006.11.005.
Kumar, A., Sengar, R., Rao, V.P., Shukla, G., Dixit, R. & Singh, R. 2017. Assessment of genetic diversity in bread wheat (Triticum aestivum L.) using RAPD markers. Journal of Applied and Natural Science, 9, 1751-1755.
Loi, M., De Leonardis, S., Mulè, G., Logrieco, A.F., Paciolla, C.A. 2020. Novel and Potentially Multifaceted Dehydroascorbate Reductase Increasing the Antioxidant Systems is induced by Beauvericin in Tomato. Antioxidants, 9, 435. https://doi.org/10.3390/antiox9050435.
Labuschagne. M., Masci, S., Tundo, S., Muccilli, V., Saletti, R., & Biljon, A. 2020. Proteomic Analysis of Proteins Responsive to Drought and Low Temperature Stress in a Hard Red Spring Wheat Cultivar. Molecules, 17, 25(6):1366. doi: 10.3390/molecules25061366. PMID:32192150; PMCID: PMC7144396.
León, E., Marín, S., Giménez, M.J., Piston, F., Rodríguez-Quijano, M., Shewry, P.R. & Barro, F. 2009. Mixing properties and dough functionality of transgenic lines of a commercial wheat cultivar expressing the 1Ax1, 1Dx5 and 1Dy10 HMW glutenin subunit genes. Journal of Cereal Science, 49, 148-156.
León, E., Piston, F., Rodríguez-Quijano, M., Shewry, P.R. & Barro, F. 2010. Stacking HMW-GS transgenes in bread wheat: Combining subunit 1Dy10 gives improved mixing properties and dough functionality. Journal of Cereal Science, 51, 13-20.
Miri, A., Sabouri, H., Hosseini Moghaddam, H., Soughi, H., Mollahshahi, M. & Sajadi, SJ. 2020. Investigation of the genetic structure of wheat (Triticum aestivum L.) grain characteristics by using image processing and generation mean analysis techniques. Journal of Genetic Resources, 6(2), 131-141. doi: 10.22080/jgr.2020.18575.1180.
Mostafaie, A. 2003. Theoretical and practical guide Protein Electrophoresis in Gel. Yadavaran Publishers. [In Persian].
Raeesi Sadati, S.Y., Jahanbakhsh Godekahriz, S., Ebadi, A. 2016. Expression of Leaf Proteins in Two Cultivars of Bread Wheat under Cadmium and Mercury Stress Using Two-Dimensional Gel Electrophoresis. Isfahan University of Technology. Journal of Crop Production and Processing, 5 (18), 233-244.
Shafiei, Y., Mehrabi, A.M., Mostafaie, A. 2020. Identifying the proteins contributing to different growth stages of wheat leaf development by using two dimensional electrophoresis. Modern Genetics Journal, 15 (3), 249-255.
Wray, J.L. 1993. Molecular biology, genetics and regulation of nitrite reduction in higher plants. Physiologia Plantarum, 89 (3), 607-612.
Yang, L., Tian, D., Luo, Y., Zhang, R., Ren, C.H. & Zhou, X. 2011. Proteomics-based identification of storage Metabolic and allergenic protein in wheat seed from 2-DE gels. African Journal of Agriculture Research, 6, 808-816.
Zhang, H., Lian, C. & Shen, Z. 2009. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza Sativa. Annals of Botany, 103(6), 923-30. doi: 10.1093/aob/mcp012. Epub Feb 5. PMID: 19201764; PMCID: PMC2707895.