کاربرد مکان‌یابی ارتباطی و عدم تعادل پیوستگی در مطالعات ژنومی گیاهی با تاکید بر ژنوم غلات

نوع مقاله : مروری

نویسندگان

1 استاد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

2 دانشجوی پسا دکتری، گروه به‌نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

3 گروه کشاورزی و علوم محیطی، دانشگاه میلان، میلان، ایتالیا.

چکیده

آگاهی از تنوع ژنتیکی و درک صفات پیچیده ژنتیکی در گونه­های زراعی نقش مهمی در بهره­برداری از منابع ژنتیکی داشته و باعث سازگاری، توسعه و گسترش کشت ارقام زراعی به ویژه غلات در مناطق مختلف جغرافیایی می­گردد. در این راستا، شناسایی و استفاده از نشانگرهای آگاهی بخش مرتبط با صفات کمی جهت استفاده در برنامه­های به­نژادی و انتخاب به کمک نشانگر از اهمیت زیادی برخوردار می­باشد. یکی از کاربردهای اصلی نشانگرها تهیه نقشه‌های مولکولی ژنوم و آنالیز پیوستگی جمعیت‌های نقشه‌یابی است. در مطالعات پیوستگی و انتخاب ژنومی تعیین میزان و گستره عدم تعادل پیوستگی (LD) در تشخیص تعداد نشانگر مورد نیاز و اندازه نمونه، اهمیت به­سزایی دارد. علاوه بر این، گزینش به­منظور افزایش فراوانی موتاسیون­های جدیدی که فقط در برخی از زیر جمعیت­ها سودمند هستند، باعث باقی گذاشتن علائمی در سطح ژنوم می­شود. اغلب این مناطق با ژن­ها و QTLهای مرتبط با صفات مهم اقتصادی در ارتباط هستند. دسترسی به فناوری­های نسل جدید توالی­یابی، حجم بالای داده­های فنوتیپی و تنوع زیاد ابزارهای آماری موجب شده است که مطالعات مکان­یابی ارتباطی مبتنی بر عدم تعادل پیوستگی در گیاهان بتواند موفقیت­های فراوانی را در شناسایی مکان­های ژنی کنترل کننده صفات کمی به همراه داشته باشد. نقشه­یابی ارتباطی مبتنی بر عدم تعادل پیوستگی می­تواند وضوح نقشه ژنتیکی را با توجه به ارائه مخزن ژنی گسترده­تر و وقایع نوترکیبی افزایش دهد. برخلاف نقشه­یابی پیوستگی، روش مکان­یابی ارتباطی با بهره­گیری از تنوع موجود در جمعیت­های طبیعی و لحاظ کردن تمامی وقایعی که در طول تکامل افراد رخ داده است، ارتباط بین تنوع فنوتیپی و چند شکلی موجود در ژنوم را شناسایی می­کند و روشی امیدوار کننده برای غلبه بر محدودیت­های نقشه­یابی پیوستگی است. علی­رغم اینکه نقشه­یابی ارتباطی از توان آماری بالایی برخوردار است اما کاربرد این روش در جمعیت­های دارای ساختار، در گونه­های با میزان کم عدم تعادل پیوستگی و در صفاتی که توسط آلل­های نادر کنترل می­شود، بسیار پیچیده و گاهی ناممکن است. LD پایه و اساس نقشه­یابی در سطح ژنوم (GWAS) است، که تحت تاثیر عوامل متعددی از جمله رانش ژنتیکی، ساختار جمعیت و گزینش طبیعی است. از عوامل محدود کننده فوق، ساختار جمعیت به عنوان یکی از عوامل اصلی اعتبارسنجی نتایج GWAS شناخته می­شود. بنابراین آگاهی در مورد الگوی عدم تعادل پیوستگی به منظور مطالعات بیشتر GWAS و گزینش ژنومی اهمیت بسزایی دارد. معیار تعیین کننده موفقیت استفاده از مطالعات GWAS و گزینش ژنومی (GS) به مقدار LD بین نشانگرها و جایگاه­های ژنومی مسبب صفات کمی در طول کل ژنوم بستگی دارد. با توجه به اهمیت روش عدم تعادل پیوستگی در مطالعات نقشه­یابی صفات کمی، در این مقاله سعی شده است تا به عمده­ترین ابعاد عدم تعادل پیوستگی، نحوه کاربرد آن در جمعیت، محدودیت­های آن و استفاده از آن در به­نژادی گیاهی به ویژه غلات پرداخته شود. همچنین، در این مقاله برخی از اطلاعات مربوط به نرم­افزارهای آماری مورد استفاده در عدم تعادل پیوستگی ارایه می­شود و در نهایت چالش­ها و چشم­اندازهای استفاده از این رویکرد بحث خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of association mapping and linkage disequilibrium in plant genomic studies with emphasis on cereal genome

نویسندگان [English]

  • Babak Abdollahi Mandolakani 1
  • Hossein Abbasi Holasou 2
  • Salar Shaaf 3
1 Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
2 Post-doctoral student, Department of Plant Breeding and Biotechnology, Faculty of Agricultural Sciences, Tabriz University, Tabriz, Iran.
3 Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy.
چکیده [English]

Knowledge of genetic diversity and understanding the genetic architecture of complex traits in crop species can play a key role in exploiting genetic diversity and lead to crop cultivation's adaptation, development and expansion in different geographical environments. In this regard, identifying and utilizing informative markers related to quantitative traits is a prerequisite for application in breeding programs and marker-assisted selection (MAS). One of the major uses of these markers is the construction of genome-wide molecular maps and genetic analysis. In genome-wide association study (GWAS) and genomic selection (GS), determining of extent and level of linkage disequilibrium (LD) is critical in sample size and marker density. Moreover, selection for increasing frequency in new mutations advantageous only in a subset of populations leaves some signatures in the genome. Locations of selection signatures are often correlated with genes and QTLs affecting economically important traits. Access to next-generation sequencing technologies, high phenotypic data and a variety of sophisticated statistical tools have enabled LD-based association mapping studies in plants to identify gene loci controlling quantitative traits successfully. Alternatively, the LD-based association mapping (AM) approach can enhance the genetic map resolution to a greater extent due to the representation of a more comprehensive gene pool and more recombination events in history. Association mapping has emerged as a tool to resolve complex trait variation down to the sequence level by exploiting evolutionary recombination events at the population level. Genetic diversity, LD extent in genome and intra-population relationship, determine quality of mapping, marker diversity, statistical methods and power of mapping. LD in population is the foundation of GWAS, whereas it is always affected by genetic drift, population stratification and natural selection. Of the above threats, population stratification is recognized as a major one to the validity of GWAS results. Therefore, knowledge concerning the pattern of LD is essential for performing GWAS and GS. As one of the most important measures in population genetics, LD is the basis of effective population size estimation, genomic selection, GWAS study and QTL mapping. Due to the importance of LD method in mapping studies of the quantitative traits, in this review, we will present LD, its application in population, current status, limitations, and its use in plant breeding, especially in cereals. Finally, this study provides some information about commonly used statistical software and packages in the calculation of LD, and the challenges and perspectives of this approach have been discussed in this study as well.

کلیدواژه‌ها [English]

  • Cereal
  • Mixed Linear Model
  • Population Structure
  • Marker-Trait Association
  • Association mapping
Abdallah, J. M., Goffinet, B., Cierco-Ayrolles, C., & Perez-Enciso, M. 2003. Linkage disequilibrium fine mapping of quantitative trait loci: A simulation study. Genetics Selection Evolution, 35, 513–532.
Abdollahi Mandoulakani, B., Rahmanpour, S., Shaaf, S., Gholamzadeh Khoei, S., Rastgou, M., & Rafezi, R. 2015. Towards the identification of retrotransposon-based and ISSR molecular markers associated with populations resistant to ZYMV in melon. South African Journal Botany, 100, 141-147.
Abdollahi Mandoulakani, B., Azizi, H., Piri, Y., Rahmanpour, S., & Hasani, L. 2015. Association analysis for morphological traits in alfalfa (Medicago sativa L.) using molecular markers. Journal of Crop Breeding, 8(19), 52-60 (In Persian).
Abdollahi Mandoulakani, B., Nasri, S. H., Dashchi, S., Arzhang, S., Bernousi, I., & Abbasi Holasou, H. 2017. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines. Comptes rendus biologies, 340, 307-313.
Abdurakhmonov, A. Y., & Abdukarimov, A. 2008. Application of association mapping to understanding the genetic diversity of plant germplasm resources. International Journal of Plant Genomics, https://doi.org/10.1155/2008/574927
Abecasis, G. R., Cardon, L. R., & Cookson, W. O. 2000. A general test of association for quantitative traits in nuclear families. American Journal of Human Genetics, 66, 279-292.
Abiola, O. 2003. The nature and identification of quantitative trait loci: a community’s view. Nature Review Genetic, 4, 911-916.
Agrama, H. A., Eizenga, G. C., & Yan, W. 2007. Association mapping of yield and its components in rice cultivars. Molecular Breedings, 19, 341-356.
Ahmed, A. A. M., Mohamed, E. A., Hussein, M. Y., & Sallam, A. 2021. Genomic regions associated with leaf wilting traits under drought stress in spring wheat at the seedling stage revealed by GWAS. Environmental and Experimental Botany, 184, 104393.
Alipour, H., & Darvishzadeh, R. 2019. Association mapping of quantitative traits in molecular cereal breeding. Cereal Research, 9(3), 271-298. https://doi.org/10.22124/cr.2019.14333.1518. (In Persian).
Balding, D. J. 2006. A tutorial on statistical methods for population association studies. Nature Publishing Group, 7, 781-791.
Belo, A., Zheng, P., Luck, S., Shen, B., Meyer, D. J., Li, B., Tingey, S., & Rafalski, A. 2008. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Molecular Genetics and Genomics, 279, 1-10.
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633-2635.
Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L., Damore, R., Allen, A. M., McKenzie, N., Kramer, M., Kerhornou, A., & Bolser, D. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 491(7426), 705.
Breseghello, F., & Sorrells, M. E. 2006a. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science, 46, 1323–1330.
Breseghello, F., & Sorrells, M. E. 2006b. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 172, 1165-1177.
Buckler, E. S. 2009. The genetic architecture of maize flowering time. Science, 325, 714-718.
Chen, X., Min, D., Yasir, T. A., & Hu, Y. G. 2012. Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLOS One, 7, e44510. https://doi.org/10.1371/journal.pone.0044510.
DeWan, A., Liu, M., Hartman, S., & Zhang, S. S. M. 2006. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science, 314, 989-992.
Dolati Baneh, H., mohammadi, S. A., Abdollahi Mandoulakani, B., & Rahmanpour, S. 2014. Association analysis for morphological traits in grapevine using SSR and AFLP markers. Iranian Journal of Agricultural Biotechnology, 1, 46-60 (In Persian).
Ehrenreich, I. M., Stafford, P. A., & Purugganan, M. D. 2007. The genetic architecture of shoot branching in Arabidopsis thaliana: A comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics, 176, 1223-1236.
Falush, D., Stephens, M., & Pritchard, J. K. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 1567-1587.
Flint-Garcia, S. A., Thrnsberry, J. M., & Buckler, E. S. 2003. Structure of linkage disequilibrium in plants. Annal Review of Plant Biology, 54, 357-374.
Gahlaut, V., Jaiswal, V., Tyagi, B. S., Singh, G., Sareen, S., & Balyan, H. S. 2017. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS One, 12, e0182857. https://doi.org/10.1371/journal.pone.0182857.
Gupta, P. K., Rustgi, S., & Kulwal, P. L. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 57, 461-485.
Hackett, C. A. 2002. Statistical methods of QTL mapping in cereals. Plant Molecular Biology, 48, 585-599.
Hedrick, P. W. 1987. Gametic disequilibrium measures: proceed with caution. Genetics, 117, 331-341.
Hill, W. G., & Robertson, A. 1968. Linkage disequilibrium in populations. Theorical and Applied Genetics, 38, 226-231.
Holland, J. B. 2007. Genetic architecture of complex traits in plants. Current Opinion Plant Biology, 10, 156-161.
Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. 2012. GAPIT: genome association and prediction integrated tool. Bioinformatics, 28 (18), 2397-2399.
Kebede, H., Subudhi, P. K., Rosenow, D. T., & Nguyen, H. T. 2001. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics, 103, 266-276. https://doi.org/10.1007/s001220100541.
Khalid, M., Afzal, F., Gul, A., Amir, R., Ahmed, Z., Mahmood, Z., Rasheed, A., & He, Z. 2019. Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Frontiers in Plant Science, 10, 717. https://doi.org/10.3389/fpls.2019.00717.
Khalid, M., Gul, A., Amir, R., Ali, M., Afzal, F., & Quraishi, U. 2018. QTL mapping for seedling morphology under drought stress in wheat cross synthetic (W7984)/Opata. Plant Genetic Resources, 16, 359-366.
Khan, M. I., Kainat, Z., Maqbool, S., Mehwish, A., Ahmad, S., Suleman, H. M., Mahmood, Z., Ali, M., Aziz, A., Rasheed, A., & Li, H. 2022. Genome-wide association for heat tolerance at seedling stage in historical spring wheat cultivars. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2022.972481.
Kraakman, A. T. W., Martínez, F., Mussiraliev, B., Eeuwijk, F. A., & Niks, R. E. 2006. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Molecular Breeding, 17, 41-58.
Mackay, T. F., Stone, E. A., & Ayroles, J. F. 2009. The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 10, 565-577.
Maulana, F., Huang, W., Anderson, J. D., & Ma, X-F. 2020. Genome-wide association mapping of seedling drought tolerance in winter wheat. Frontiers in Plant Science, 11,573786. https://doi.org/10.3389/fpls.2020.57378.
Mayer, K. F., Waugh, R., Brown, J. W., Schulman, A., Langridge, P., Platzer, M., Fincher, G. B., Muehlbauer, G. J., Sato, K., Close, T. J., Wise, R. P., & Stein, N. 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature, 491(7426), 711-716.
Meuwissen, T.H.E., & Goddard, M.E. 2000. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics, 155, 421-430.
Nadeem, M. Z., Nawaz, M. N., Shahid, M. Q., Dogan, Y., Comertpay, G., Yıldız, M., Hatipoglu, R., Ahmad, F., Alsaleh, A., Labhane, N. O., Zkan, H., Chung, G., & Baloch, F. S. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2), 261-285.
Nielsen, N. H., Backes, G., Stougaard, J., & Jahoor, A. 2014. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties. PLos One, https://doi.org/10.1371/journal.pone.0094000.
Ogrodowicz, P., Mikolajczak, K., Kempa, M., Mokrzycka, M., Krajewski, P., & Kuczynska, A. 2023. Genome-wide association study of agronomical and root-related traits in spring barley collection grown under field conditions. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2023.1077631.
Oraguzie, N. C., Wilcox, P. L., Rikkerink, E. H. A., & De Silva, H. N. 2007. Linkage disequilibrium, Association mapping in plants. Springer New York USA, 11-39.
Pasam, R. K., Sharma, R., Malosetti, M., & Van Eeuwijk, F. A. 2012. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biology, 12, 16.
Platten, J. D., Cobb, J. N., & Zantua, R. E. 2019. Criteria for evaluating molecular markers: comprehensive quality metrics to improve marker -assisted selection. PLoS One, 14(1), e0210529.
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904-909.
Pritchard, J. K., Stephens, M., & Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Qaseem, M. F., Qureshi, R., Muqaddasi, Q. H., Kousar, R., & Roder, M. S. 2018. Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress. Plos One, https://doi.org/10.1371/journal.pone.0199121.
Qu, Y. Y., Mu, P., Li, X. Q., Tian, Y. X., Wen, F., & Zhang, H. L. 2008. QTL mapping and correlations between leaf water potential and drought resistance in rice under upland and lowland environments. Acta Agronomica Sinica, 34, 198-206. https://doi.org/10.1016/S1875-2780(08)60008-5.
R Core Team 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.r-project.org/
Rao Kovi, R., Fjellheim, S., Larsen, A., Rudi, H., Asp, T., Peter Kent, M., & Rognli, O. A. 2015. Population structure, genetic variation, and linkage disequilibriumin perennial ryegrass populations divergently selected for freezing tolerance. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2015.00929
Rafalski, A., & Morgante, M. 2004. Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends in Genetic, 20, 103-111.
Remington, D. L., Thornsberry, J. M., Matsuoka, Y., Wilson, L. M., Whitt, S. R., Doebley, J., Kresovich, S., Goodman, M. M., & Buckler, E. S. 2001. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. National Academic Science USA, 98, 11479-11484.
Rostoks, N., Ramsay, L., Mackenzie, K., Cardle, L., Bhat, P. R., Roose, M. L., Svensson, J. T., Stein, N., Varshney, R. K., Marshall, D. F., Graner, A., Close, T. J., & Waugh, R. 2006. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc National Academic Science, USA.
Safdar, L., Bin, A., Ndleeb, T., Latif, S., Umer, M. J., Tang, M., Li, X., Liu, Sh., & Quraishi, U. M. 2020. Genome-wide association study and QTL meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Frontiers in Plant Science, 11, 1-14 https://doi.org/ 10.3389/fpls.2020.00070
Schulze, T. G., & McMahon, F. J. 2002. Genetic association mapping at the crossroads: which test and why? Overview and practical guidelines. American Journal of Medical Genetics, 114(1), 1-11.
Semagn, K., Bjornstad, A., & Xu, Y. 2010. The genetic dissection of quantitative traits in crops. Electronic Journal of Biotechnology, 13, 1-45.
Stich, B., Yu, J., Melchinger, A. E., Piepho, H. P., Utz, H. F., Maurer, H. P., & Buckler, E. S. 2007. Power to detect higher-order epistatic interactions in a metabolic pathway using a new mapping strategy. Genetics, 176, 563-570.
Sukumaran, S., Reynolds, M. P., & Sansaloni, C. 2018. Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2018.00081.
Weber, A., Clark, R. M., Vaughn, L., Sánchez-Gonzalez, J. D. J., Yu, J., Yandell, B. S., Bradbury, P., & Doebley, J. F. 2008. Major regulatory genes in maize contribute to standing variation in Teosinte (Zea mays ssp. parviglumis). Genetics, 177, 2349-2359.
Wei, X. M., Jackson, P. A., McIntyre, C. L., Aitken, K. S., & Crot, B. 2006. Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theatrical and Applied Genetics, 114, 155-164.
Yasir, M., Kanwal, H. H., Hussain, Q., Riaz, M. W., & Sajjad, M. 2022. Status and prospects of genome-wide association studies in cotton. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2022.1019347.
Yu, J., & Buckler, E. S. 2006. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 17(2), 155-160.
Yu, J., Pressoir, G., Briggs, W. H., Vroh, B. I., Yamasaki, M., Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen, D. M., Holland, J. B., Kresovich, S., & Buckler, E. S. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38, 203-208.
Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., Bradbury, P. J., Yu, J., Arnett, D. K., Ordovas, J. M., & Buckler, E. S. 2010. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 24, 355-362.
Zhao, K., Aranzana, M.J., Kim, S., Lister, C., Shindo, C., Tang, C., Toomajian, C., Zheng, H., Dean, C., Marjoram, P., & Nordborg, M. 2007. An arabidopsis example of association mapping in structured samples. PLoS Genetics, 3)1(, 71-82.
Zhu, C., Gore, M., Bucker, E. S., & Yu, J. 2008. Status and Prospects of Association Mapping in Plants. The plant genome, 1(1), 5-20.
Zhu, J. J., Wang, X. P., Sun, C. X., Zhu, X. M., Li, M., & Zhang, G. D. 2011. Mapping of QTL associated with drought tolerance in a semi-automobile rain shelter in maize (Zea mays L.). Agricultural Science in China, 10, 987-996. https://doi.org/10.1016/ S1671-2927(11)60085-0.