Ajayi, O. O., Bregitzer, P., Klos, K., Hu, G., Walling, J. G., & Mahalingam, R. 2023. QTL mapping of shoot and seed traits impacted by Drought in Barley using a recombinant inbred line Population. BMC Plant Biology, 23, 283.
https://doi.org/10.1186/s12870-023-04292-x
Ali, M., Hussain, M., Khan, M., Ali, Z., Zulkiffal, M., Anwar, J., Sabir, W., & Zeeshan, M. 2010. Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (
Triticum aestivum). International Journal of Agriculture and Biology, 12, 509-515.
https://digitalcommons.memphis.edu/facpubs/14242
Beheshtizadeh, H., Fakheri, B. A., Aghnoum, R., Mahdinezhad, N., Pourdad, S. S., & Masoudi, B. 2018. QTL mapping of grain yield and its components under normal and drought stress conditions in barley (
Hordeum vulgare L.). Indian Journal of Genetics and Plant Breeding, 78, 69-80.
https://www.isgpb.org/journal/index.php/IJGPB/article/view/57
Dorrani Nezhad, M., Mohammadi Nezhad, Q., & Nakhoda, B. 2016. QTL mapping of grain yield and yield components in pure lines derived from Roshan× Falat bread wheat varieties (
Triticum aestivum L.) under limited irrigation condition. Agricultural Biotechnology Journal, 8, 33-46. https://doi.org/
10.22103/jab.2016.1417. (In Persian)
Du, B., Liu, L., Wang, Q., Sun, G., Ren, X., Li, C., & Sun, D. 2019. Identification of QTL underlying the leaf length and area of different leaves in barley. Scientific Reports, 9, 4431.
https://doi.org/10.1038/s41598-019-40703-6
FAO, 2021. Food and Agriculture Organization of the United Nations-Statistic Division.
https://www. fao. org/faost at/en/# data: QC.
Farokhzadeh, S., Fakheri, B., Mahdi Nezhad, N., Tahmasebi, S., Mirsoleimani, A., & Heidari, B. 2020a. Mapping QTLs associated with grain yield and yield-related traits under aluminum stress in bread wheat. Crop and Pasture Science, 71, 429-444.
https://doi.org/10.1071/CP19511
Farokhzadeh, S., Fakheri, B. A., Mahdi Nezhad, N., Tahmasebi, S., & Mirsoleimani, A. 2020b. Genetic dissection of spike-related traits in wheat (
Triticum aestivum L.) under aluminum stress. Genetic Resources and Crop Evolution, 67, 1221-1243.
https://doi.org/10.1007/s10722-020-00907-6
Farokhzadeh, S., Fakheri, B. A., Nezhad, N. M., Tahmasebi, S., Mirsoleimani, A. 2019. Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat (
Triticum aestivum L.). Physiology and Molecular Biology of Plants, 25, 975-990. https://doi.org/
10.1007/s12298-019-00670-8
Francia, E., Rizza, F., Cattivelli, L., Stanca, A. M., Galiba, G., Toth, B., Hayes, P. M., Skinner, J. S., & Pecchioni, N. 2004. Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’(winter)בTremois’(spring) barley map. Theoretical and Applied Genetics, 108, 670-680.
https://doi.org/10.1007/s00122-003-1468-9
Govindaraj, P., Vinod, K., Arumugachamy, S., & Maheswaran, M. 2009. Analysing genetic control of cooked grain traits and gelatinization temperature in a double haploid population of rice by quantitative trait loci mapping. Euphytica, 166, 165-176.
https://doi.org/10.1007/s10681-008-9808-0
Guo, P., Baum, M., Varshney, R. K., Graner, A., Grando, S., & Ceccarelli, S. 2008. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 163, 203-214.
https://doi.org/10.1007/s10681-007-9629-6
Gyenis, L., Yun, S., Smith, K., Steffenson, B., Bossolini, E., Sanguineti, M., & Muehlbauer, G. 2007. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome, 50, 714-723. https://doi.org/
10.1139/g07-054
Hasanuzzaman, M., Nahar, K., Gill, S.S., & Fujita, M. 2013. Drought stress responses in plants, oxidative stress, and antioxidant defense. Climate Change and Plant Abiotic Stress Tolerance, 209-250.
https://doi.org/10.1002/9783527675265.ch09
Huang, S., Sun, L., Hu, X., Wang, Y., Zhang, Y., Nevo, E., Peng, J., & Sun, D. 2018. Associations of canopy leaf traits with SNP markers in durum wheat (
Triticum turgidum L. durum (Desf.)). PLOS ONE, 13, e0206226.
https://doi.org/10.1371/journal.pone.0206226
Jabbari, M., Fakheri, B. A., Aghnoum, R., Mahdi Nezhad, N., & Ataei, R. 2018. GWAS analysis in spring barley (
Hordeum vulgare L.) for morphological traits exposed to drought. PLOS ONE, 13, e0204952.
https://doi.org/10.1371/journal.pone.0204952
Jabbari, M., Fakheri, B. A., Aghnoum, R., Nezhad, N. M., Ataei, R., & Koochakpour, Z. 2019. Association mapping of morphological and physiological traits of flag leaf related to drought tolerance in barley. Revista de Agricultura Neotropical, 6, 7-18.
https://www.academia.edu/62332006
Kadam, N. N., Xiao, G., Melgar, R. J., Bahuguna, R. N., Quinones, C., Tamilselvan, A., Prasad, P. V. V., & Jagadish, K. S. 2014. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Advances in Agronomy, 127, 111-156.
https://doi.org/10.1016/B978-0-12-800131-8.00003-0
Koochakpour, Z., Solouki, M., Fakheri, B. A., Aghnoum, R., Mahdi Nezhad, N., & Jabbari, M. 2021. Identification of genomic loci controlling phenologic and morphologic traits in barley (
Hordeum vulgare L.) genotypes using association analysis. Iranian Journal of Crop Sciences, 22, 291-304. https://doi.org/
10.52547/abj.22.4.291 (In Persian)
Liu, L., Sun, G., Ren, X., Li, C., & Sun, D. 2015. Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genetics, 16, 1-10.
https://doi.org/10.1186/s12863-015-0187-y
Liu, P., Zhu, J., Lou, X., & Lu, Y. 2003. A method for marker-assisted selection based on QTLs with epistatic effects. Genetica, 119, 75-86. https://doi.org/
10.1023/a:1024439008631
Long, Y., Zhang, C., & Meng, J. 2008. Challenges for QTL analysis in crops. Journal of Crop Science and Biotechnology, 11, 7-12.
Makhtoum, S., Sabouri, H., Gholizadeh, A., Ahangar, L., Katouzi, M., & Mastinu, A. 2022. Mapping of QTLs controlling barley agronomic traits (
Hordeum vulgare L.) under normal conditions and drought and salinity stress at reproductive stage. Plant Gene, 31, 100375.
https://doi.org/10.1016/j.plgene.2022.100375
McIntyre, C. L., Mathews, K. L., Rattey, A., Chapman, S. C., Drenth, J., Ghaderi, M., Reynolds, M., & Shorter, R. 2010. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theoretical and Applied Genetics, 120, 527-541.
https://doi.org/10.1007/s00122-009-1173-4
Mikołajczak, K., Ogrodowicz, P., Gudyś, K., Krystkowiak, K., Sawikowska, A., Frohmberg, W., Górny, A., Kędziora, A., Jankowiak, J., & Józefczyk, D. 2016. Quantitative trait loci for yield and yield-related traits in spring barley populations derived from crosses between European and Syrian cultivars. PLOS ONE, 11, e0155938.
https://doi.org/10.1371/journal.pone.0155938
Moualeu-Ngangué, D., Dolch, C., Schneider, M., Léon, J., Uptmoor, R., & Stützel, H. 2020. Physiological and morphological responses of different spring barley genotypes to water deficit and associated QTLs. PLOS ONE, 15, e0237834.
https://doi.org/10.1371/journal.pone.0237834
Niu, Y., Chen, T., Zheng, Z., Zhao, C., Liu, C., Jia, J., & Zhou, M. 2022. A new major QTL for flag leaf thickness in barley (
Hordeum vulgare L.). BMC Plant Biology, 22, 305.
https://doi.org/10.1186/s12870-022-03694-7
Rizza, F., Badeck, F., Cattivelli, L., Lidestri, O., Di Fonzo, N., & Stanca, A. 2004. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science, 44, 2127-2137.
https://doi.org/10.2135/cropsci2004.2127
Rozanova, I. V., Grigoriev, Y. N., Efimov, V. M., Igoshin, A. V., & Khlestkina, E. K. 2023. Genetic dissection of spike productivity traits in the siberian collection of spring barley. Biomolecules, 13, 909.
https://doi.org/10.3390/biom13060909
Tian, L., Liu, X., Zhang, B., Liu, M., & Wu, L. 2017. Extraction of rice heavy metal stress signal features based on long time series leaf area index data using ensemble empirical mode decomposition. International Journal of Environmental Research and Public Health, 14, 1018.
https://doi.org/10.3390/ijerph14091018
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108, 20260-20264.
https://doi.org/10.1073/pnas.1116437108
Tondelli, A., Francia, E., Visioni, A., Comadran, J., Mastrangelo, A., Akar, T., Al-Yassin, A., Ceccarelli, S., Grando, S., & Benbelkacem, A. 2014. QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’בTremois’ biparental population. Euphytica, 197, 73-86.
https://doi.org/10.1007/s10681-013-1053-5
Vafadar Shamasbi, F., Jamali, S. H., Sadeghzadeh, B., & Abdollahi Mandoulakani, B. 2017. Genetic mapping of quantitative trait loci for yield-affecting traits in a barley doubled haploid population derived from clipper × sahara 3771. Frontiers in Plant Science, 8, 688.
https://doi.org/10.3389/fpls.2017.00688
von Korff, M., Grando, S., Del Greco, A., This, D., Baum, M., & Ceccarelli, S. 2008. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics, 117, 653-669.
https://doi.org/10.1007/s00122-008-0787-2
Wang, S., Basten, C., & Zeng, Z. 2010. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA.
Xue, D.-w., Chen, M.-c., Zhou, M.-x., Chen, S., Mao, Y., & Zhang, G.-p. 2008. QTL analysis of flag leaf in barley (
Hordeum vulgare L.) for morphological traits and chlorophyll content. Journal of Zhejiang University. Science, B9, 938. https://doi.org/
10.1631/jzus.B0820105
Yang, D., Liu, Y., Cheng, H., Chang, L., Chen, J., Chai, S., & Li, M. 2016. Genetic dissection of flag leaf morphology in wheat (
Triticum aestivum L.) under diverse water regimes. BMC genetics, 17, 1-15.
https://doi.org/10.1186/s12863-016-0399-9
Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X., & Zhu, J. 2008. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 24, 721-723.
https://doi.org/10.1093/bioinformatics/btm494
Zhao, F., & Xu, S. 2012. Genotype by environment interaction of quantitative traits: a case study in barley. G3: Genes| Genomes| Genetics, 2, 779-788.
https://doi.org/10.1534/g3.112.002980
Zhou, G., Zhang, Q., Zhang, X.-q., Tan, C., & Li, C. 2015. Construction of high-density genetic map in barley through restriction-site associated DNA sequencing. PlOS ONE, 10, e0133161.
https://doi.org/10.1371/journal.pone.0133161