تجزیه ژنتیکی صفات مرتبط با برگ پرچم در جو (Hordeum vulgare L.) تحت شرایط نرمال و تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش اصلاح نباتات و بیوتکنولوژی، دانشکده کشاوزی، دانشگاه زابل، زابل، ایران.

2 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

3 بخش تحقیقات دانه های روغنی، موسسه تحقیقات کشاورزی دیم، معاونت سرارود، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران.

4 بخش تحقیقات دانه های روغنی، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

5 دکتری اصلاح نباتات، بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج

چکیده

مقدمه: جو (Hordeum vulgare L.) به‌عنوان چهارمین غله مهم در جهان شناخته می‌شود. تنش خشکی نیز یکی از عوامل اصلی کاهش رشد و عملکرد جو است و عملکرد دانه با ویژگی‌های مورفولوژیکی برگ پرچم به‌طور مستقیم ارتباط دارد.
مواد و روش‌ها: به‌منظور شناسایی نواحی ژنومی اصلی و اپیستاتیک و بررسی اثر متقابل آن‌ها با محیط برای صفات مورفولوژیک مرتبط با برگ پرچم از جمله طول، عرض، سطح و طول غلاف برگ پرچم، آزمایشی با 136 لاین دابل‌هاپلوئید جو به همراه والدین آن‌ها ‘Nure’ و  ‘Tremois’در قالب طرح آلفا لاتیس با دو تکرار تحت دو شرایط نرمال و تنش خشکی در ایستگاه تحقیقات کشاورزی زابل در سال زراعی 95-1394 اجرا شد. برای تجزیه QTL، نقشه ژنتیکی جمعیت مورد نظر شامل 543 نشانگر (DArT، SSR، SNP و AFLP) بود. در این مطالعه، تجزیه QTL تک ‌مکانی و دو مکانی به‌ترتیب با استفاده از روش‌های نقشه‌یابی فاصله­ای مرکب (CIM) و مدل ترکیبی بر اساس مکان­یابی فاصله­ای مرکب (MCIM) انجام گرفت.
یافته‌ها: بر اساس تجزیه تک مکانی، پنج QTL شامل سه QTL قوی Q1FLW-1H.SZ، Q1SHFLL-1H.NZ و Q2SHFLL-1H.NZ در فاصله‌های نشانگری bPb-6343-bPb-8081، bPb-1419-bPb-9180 و bPb-9108-bPb-6343 و دو QTL پیشنهادی روی کروموزوم‌های 1H و 5H برای صفات عرض برگ پرچم (FLW, cm) و طول غلاف برگ پرچم (SHFLL, cm) مشخص شدند. بر اساس تجزیه دو مکانی، هشت QTL افزایشی (M-QTL) و 15 جفت QTL اپستازی (E-QTL) برای صفات مختلف شناسایی شدند که در این بین، دو جفت QTL اپستازی برای صفت FLW، اثرات متقابل QTL در محیط معنی‌داری (AAEI) را نشان دادند. همهM-QTLهای شناسایی شده برای صفات مرتبط با برگ پرچم در دو محیط، بدون اثرات متقابل افزایشی × محیط(AEI) ، به‌عنوانQTLهای پایدار شناسایی شدند و بیشترین تعدادQTLهای پایدار مربوط به کروموزوم 1H بود. در این مطالعه، QTLهای مربوط به تحمل خشکی در همه کروموزوم‌های جو به‌جز کروموزوم 2H شناسایی شدند..
نتیجه‌گیری: اکثرQTL های مرتبط با صفات مورد بررسی در جمعیت Nure/Tremois در مطالعه حاضر قبلاً گزارش نشده‌اند و جدید هستند. QTLهای قوی و پایدار کنترل کننده صفات مرتبط با برگ پرچم در این مطالعه، همراه با نشانگرهای پیوسته به این QTLها، پس از تایید و اعتبارسنجی در شرایط محیطی و زمینه‌های ژنتیکی مختلف، می‌توانند در برنامه‌های به‌نژادی انتخاب به کمک نشانگر (MAS) و هرم‌سازی ژن برای ایجاد ارقام جو پر‌محصول و متحمل به خشکی مورد استفاده قرار گیرند. علاوه بر این، یافته‌های این پژوهش، درک روابط ژنتیکی بین صفات مرتبط با برگ پرچم را در سطح مولکولی تسریع می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genetic dissection of flag-leaf related traits in barley (Hordeum vulgare L.) under normal and drought stress conditions

نویسندگان [English]

  • Hazhir Beheshtizadeh 1
  • Barat Ali Fakheri 1
  • Reza Aghnoum 2
  • Nafiseh Mahdi Nezhad 1
  • Seyyed Saeid Pourdad 3
  • Bahram Masoudi 4
  • Sara Farokhzadeh 5
1 Department of Plant Breeding and Biotechnology, College of Agriculture, University of Zabol, Zabol, Iran
2 Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization. (AREEO), Mashhad, Iran.
3 Oil Crops Research Department, Dryland Agricultural Research Institute, Sararood Branch, Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, Iran.
4 Oil Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization. (AREEO), Karaj, Iran.
5 PhD of Plant Breeding, Field and Horticultural Crops Research Department, Fras Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization. (AREEO), Shiraz, Iran.
چکیده [English]

Introduction: Barley (Hordeum vulgare L.) is known as the fourth most important grain crop in the world. Drought stress is also one of the main factors that reduce the growth and yield of barley, and grain yield is directly related to the morphological characteristics of the flag leaf..
Materials and methods: In order to identify the main and epistatic genomic regions and investigate their interaction with the environment for morphological traits related to flag leaf, including length, width, area, and flag leaf sheath length, an experiment was conducted with 136 doubled haploid lines of barley along with their parents 'Nure' and 'Tremois' using an alpha lattice design with two replications under normal and drought stress conditions at the Zabol Agricultural Research Station, Iran, in 2015-16 growing season. The genetic map of the target population comprised 543 markers (including DArT, SSR, SNP, and AFLP markers) for the QTL analysis. In this study, single-locus and two-locus QTL analyses were performed using the composite interval mapping (CIM) and mixed-model based composite interval mapping (MCIM) methods, respectively.
Results: Based on a single-locus analysis, five QTLs were identified, including three putative QTLs, Q1FLW-1H.SZQ1SHFLL-1H.NZ and Q2SHFLL-1H.NZ at bPb-6343-bPb-8081bPb-1419-bPb-9180, and bPb-9108-bPb-6343 marker intervals, and two suggestive QTLs, on chromosomes 1H and 5H for the traits of flag leaf width (FLW, cm) and flag leaf sheath length (SHFLL, cm). Based on a two-locus analysis, eight additive (M-QTL) QTLs and 15 pairs of epistatic effects (E-QTL) were detected for different traits, among which two pairs of epistatic QTLs for the FLW trait showed significant QTL × environment interactions (AAEI). All detected M-QTLs for flag-leaf-related traits across two environments, without additive × environment interactions (AEI), were identified as stable QTLs, and the highest number of stable QTLs was associated with chromosome 1H. In this study, drought stress-tolerant QTLs were identified in all barley chromosomes except chromosome 2H.
Conclusion: Most of the QTLs associated with the investigated traits in the Nure/Tremois population in the present study have not been reported previously and, therefore, are novel. The stable and putative QTLs controlling flag-leaf-related traits in this study, along with the markers linked to these QTLs, can be utilized in marker-assisted selection (MAS) and gene pyramiding breeding programs after confirmation and validation in different environmental conditions and genetic backgrounds to create high-yielding and drought-tolerant barley cultivars. Additionally, these findings will accelerate the understanding of the genetic relationships among spike-related traits at the molecular level.

کلیدواژه‌ها [English]

  • Additive QTL
  • barley
  • drought tolerance
  • epistatic effects
  • QTL × environment interaction
Abou-Elwafa SF. 2016. Association mapping for drought tolerance in barley at the reproductive stage. Comptes Rendus Biologies, 339, 51-59. https://doi.org/10.1016/j.crvi.2015.12.002
Ajayi, O. O., Bregitzer, P., Klos, K., Hu, G., Walling, J. G., & Mahalingam, R. 2023. QTL mapping of shoot and seed traits impacted by Drought in Barley using a recombinant inbred line Population. BMC Plant Biology, 23, 283. https://doi.org/10.1186/s12870-023-04292-x
Ali, M., Hussain, M., Khan, M., Ali, Z., Zulkiffal, M., Anwar, J., Sabir, W., & Zeeshan, M. 2010. Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (Triticum aestivum). International Journal of Agriculture and Biology, 12, 509-515. https://digitalcommons.memphis.edu/facpubs/14242
Beheshtizadeh, H., Fakheri, B. A., Aghnoum, R., Mahdinezhad, N., Pourdad, S. S., & Masoudi, B. 2018. QTL mapping of grain yield and its components under normal and drought stress conditions in barley (Hordeum vulgare L.). Indian Journal of Genetics and Plant Breeding, 78, 69-80. https://www.isgpb.org/journal/index.php/IJGPB/article/view/57
Biswal, A. K., & Kohli, A. 2013. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Molecular Breeding, 31, 749-766. https://doi.org/10.1007/s11032-013-9847-7
Chowdhry, A. R., Saleem, M., & Alam, K. 1976. Relation between flag leaf, yield of grain and yield components in wheat. Experimental Agriculture, 12, 411-415. https://doi.org/10.1017/S0014479700007432
Dorrani Nezhad, M., Mohammadi Nezhad, Q., & Nakhoda, B. 2016. QTL mapping of grain yield and yield components in pure lines derived from Roshan× Falat bread wheat varieties (Triticum aestivum L.) under limited irrigation condition. Agricultural Biotechnology Journal, 8, 33-46. https://doi.org/10.22103/jab.2016.1417. (In Persian)
Du, B., Liu, L., Wang, Q., Sun, G., Ren, X., Li, C., & Sun, D. 2019. Identification of QTL underlying the leaf length and area of different leaves in barley. Scientific Reports, 9, 4431. https://doi.org/10.1038/s41598-019-40703-6
FAO, 2021. Food and Agriculture Organization of the United Nations-Statistic Division. https://www. fao. org/faost at/en/# data: QC.
Farokhzadeh, S., Fakheri, B., Mahdi Nezhad, N., Tahmasebi, S., Mirsoleimani, A., & Heidari, B. 2020a. Mapping QTLs associated with grain yield and yield-related traits under aluminum stress in bread wheat. Crop and Pasture Science, 71, 429-444. https://doi.org/10.1071/CP19511
Farokhzadeh, S., Fakheri, B. A., Mahdi Nezhad, N., Tahmasebi, S., & Mirsoleimani, A. 2020b. Genetic dissection of spike-related traits in wheat (Triticum aestivum L.) under aluminum stress. Genetic Resources and Crop Evolution, 67, 1221-1243. https://doi.org/10.1007/s10722-020-00907-6
Farokhzadeh, S., Fakheri, B. A., Nezhad, N. M., Tahmasebi, S., Mirsoleimani, A. 2019. Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 25, 975-990. https://doi.org/10.1007/s12298-019-00670-8
Francia, E., Rizza, F., Cattivelli, L., Stanca, A. M., Galiba, G., Toth, B., Hayes, P. M., Skinner, J. S., & Pecchioni, N. 2004. Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’(winter)בTremois’(spring) barley map. Theoretical and Applied Genetics, 108, 670-680. https://doi.org/10.1007/s00122-003-1468-9
Govindaraj, P., Vinod, K., Arumugachamy, S., & Maheswaran, M. 2009. Analysing genetic control of cooked grain traits and gelatinization temperature in a double haploid population of rice by quantitative trait loci mapping. Euphytica, 166, 165-176. https://doi.org/10.1007/s10681-008-9808-0
Guo, P., Baum, M., Varshney, R. K., Graner, A., Grando, S., & Ceccarelli, S. 2008. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica, 163, 203-214. https://doi.org/10.1007/s10681-007-9629-6
Gyenis, L., Yun, S., Smith, K., Steffenson, B., Bossolini, E., Sanguineti, M., & Muehlbauer, G. 2007. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome, 50, 714-723. https://doi.org/10.1139/g07-054
Hasanuzzaman, M., Nahar, K., Gill, S.S., & Fujita, M. 2013. Drought stress responses in plants, oxidative stress, and antioxidant defense. Climate Change and Plant Abiotic Stress Tolerance, 209-250. https://doi.org/10.1002/9783527675265.ch09
Huang, S., Sun, L., Hu, X., Wang, Y., Zhang, Y., Nevo, E., Peng, J., & Sun, D. 2018. Associations of canopy leaf traits with SNP markers in durum wheat (Triticum turgidum L. durum (Desf.)). PLOS ONE, 13, e0206226. https://doi.org/10.1371/journal.pone.0206226
Jabbari, M., Fakheri, B. A., Aghnoum, R., Mahdi Nezhad, N., & Ataei, R. 2018. GWAS analysis in spring barley (Hordeum vulgare L.) for morphological traits exposed to drought. PLOS ONE, 13, e0204952. https://doi.org/10.1371/journal.pone.0204952
Jabbari, M., Fakheri, B. A., Aghnoum, R., Nezhad, N. M., Ataei, R., & Koochakpour, Z. 2019. Association mapping of morphological and physiological traits of flag leaf related to drought tolerance in barley. Revista de Agricultura Neotropical, 6, 7-18. https://www.academia.edu/62332006
Kadam, N. N., Xiao, G., Melgar, R. J., Bahuguna, R. N., Quinones, C., Tamilselvan, A., Prasad, P. V. V., & Jagadish, K. S. 2014. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Advances in Agronomy, 127, 111-156. https://doi.org/10.1016/B978-0-12-800131-8.00003-0
Koochakpour, Z., Solouki, M., Fakheri, B. A., Aghnoum, R., Mahdi Nezhad, N., & Jabbari, M. 2021. Identification of genomic loci controlling phenologic and morphologic traits in barley (Hordeum vulgare L.) genotypes using association analysis. Iranian Journal of Crop Sciences, 22, 291-304. https://doi.org/10.52547/abj.22.4.291  (In Persian)
Liu, L., Sun, G., Ren, X., Li, C., & Sun, D. 2015. Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genetics, 16, 1-10. https://doi.org/10.1186/s12863-015-0187-y
Liu, P., Zhu, J., Lou, X., & Lu, Y. 2003. A method for marker-assisted selection based on QTLs with epistatic effects. Genetica, 119, 75-86. https://doi.org/10.1023/a:1024439008631
Long, Y., Zhang, C., & Meng, J. 2008. Challenges for QTL analysis in crops. Journal of Crop Science and Biotechnology, 11, 7-12.
Makhtoum, S., Sabouri, H., Gholizadeh, A., Ahangar, L., Katouzi, M., & Mastinu, A. 2022. Mapping of QTLs controlling barley agronomic traits (Hordeum vulgare L.) under normal conditions and drought and salinity stress at reproductive stage. Plant Gene, 31, 100375. https://doi.org/10.1016/j.plgene.2022.100375
Mather K. 1941. Variation and selection of polygenic characters. Journal of Genetics, 41, 159-193. https://doi.org/10.1007/BF02983019
McIntyre, C. L., Mathews, K. L., Rattey, A., Chapman, S. C., Drenth, J., Ghaderi, M., Reynolds, M., & Shorter, R. 2010. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theoretical and Applied Genetics, 120, 527-541. https://doi.org/10.1007/s00122-009-1173-4
Mikołajczak, K., Ogrodowicz, P., Gudyś, K., Krystkowiak, K., Sawikowska, A., Frohmberg, W., Górny, A., Kędziora, A., Jankowiak, J., & Józefczyk, D. 2016. Quantitative trait loci for yield and yield-related traits in spring barley populations derived from crosses between European and Syrian cultivars. PLOS ONE, 11, e0155938. https://doi.org/10.1371/journal.pone.0155938
Moualeu-Ngangué, D., Dolch, C., Schneider, M., Léon, J., Uptmoor, R., & Stützel, H. 2020. Physiological and morphological responses of different spring barley genotypes to water deficit and associated QTLs. PLOS ONE, 15, e0237834. https://doi.org/10.1371/journal.pone.0237834
Niu, Y., Chen, T., Zheng, Z., Zhao, C., Liu, C., Jia, J., & Zhou, M. 2022. A new major QTL for flag leaf thickness in barley (Hordeum vulgare L.). BMC Plant Biology, 22, 305. https://doi.org/10.1186/s12870-022-03694-7
Rizza, F., Badeck, F., Cattivelli, L., Lidestri, O., Di Fonzo, N., & Stanca, A. 2004. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science, 44, 2127-2137. https://doi.org/10.2135/cropsci2004.2127
Rozanova, I. V., Grigoriev, Y. N., Efimov, V. M., Igoshin, A. V., & Khlestkina, E. K. 2023. Genetic dissection of spike productivity traits in the siberian collection of spring barley. Biomolecules, 13, 909. https://doi.org/10.3390/biom13060909
Tian, L., Liu, X., Zhang, B., Liu, M., & Wu, L. 2017. Extraction of rice heavy metal stress signal features based on long time series leaf area index data using ensemble empirical mode decomposition. International Journal of Environmental Research and Public Health, 14, 1018. https://doi.org/10.3390/ijerph14091018
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108, 20260-20264. https://doi.org/10.1073/pnas.1116437108
Tondelli, A., Francia, E., Visioni, A., Comadran, J., Mastrangelo, A., Akar, T., Al-Yassin, A., Ceccarelli, S., Grando, S., & Benbelkacem, A. 2014. QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’בTremois’ biparental population. Euphytica, 197, 73-86. https://doi.org/10.1007/s10681-013-1053-5
Vafadar Shamasbi, F., Jamali, S. H., Sadeghzadeh, B., & Abdollahi Mandoulakani, B. 2017. Genetic mapping of quantitative trait loci for yield-affecting traits in a barley doubled haploid population derived from clipper × sahara 3771. Frontiers in Plant Science, 8, 688. https://doi.org/10.3389/fpls.2017.00688
von Korff, M., Grando, S., Del Greco, A., This, D., Baum, M., & Ceccarelli, S. 2008. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics, 117, 653-669. https://doi.org/10.1007/s00122-008-0787-2
Voorrips R. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77-78. https://doi.org/10.1093/jhered/93.1.77
Wang, S., Basten, C., & Zeng, Z. 2010. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA.
Xue, D.-w., Chen, M.-c., Zhou, M.-x., Chen, S., Mao, Y., & Zhang, G.-p. 2008. QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. Journal of Zhejiang University. Science, B9, 938. https://doi.org/10.1631/jzus.B0820105
Yang, D., Liu, Y., Cheng, H., Chang, L., Chen, J., Chai, S., & Li, M. 2016. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC genetics, 17, 1-15. https://doi.org/10.1186/s12863-016-0399-9
Yang, J., Hu, C., Hu, H., Yu, R., Xia, Z., Ye, X., & Zhu, J. 2008. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 24, 721-723. https://doi.org/10.1093/bioinformatics/btm494
Zhao, F., & Xu, S. 2012. Genotype by environment interaction of quantitative traits: a case study in barley. G3: Genes| Genomes| Genetics, 2, 779-788. https://doi.org/10.1534/g3.112.002980
Zhou, G., Zhang, Q., Zhang, X.-q., Tan, C., & Li, C. 2015. Construction of high-density genetic map in barley through restriction-site associated DNA sequencing. PlOS ONE, 10, e0133161. https://doi.org/10.1371/journal.pone.0133161