Alipour, A., Mosavi, S. H., Khalilian, S., & Mortazavi, A. 2018. Wheat self-sufficiency and population growth in Iran's 1404 perspective (investigating the role of the guaranteed purchase policy). Iranian Journal of Agricultural Economics and Development Research, 49, 635-649. doi: 685782018.254163.6ijaedr./10.22059
Altaf, M. A., Shahid, R., Ren, M. X., Naz, S., Altaf, M. M., Khan, L. U., ... & Ahmad, P. (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system
. Antioxidants, 11, 309.
https://doi.org/10.3390/antiox11020309
Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in
Beta vulgaris. Plant physiology, 24,1-7. doi:
10.1104/pp.24.1.1
Bates, L. S., Waldren, R. P., & Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
https://doi.org/10.1007/BF00018060
Behboudi, F., Tahmasebi-Sarvestani, Z., Kassaee, M. Z., Modarres-Sanavy, S. A. M., Sorooshzadeh, A., & Mokhtassi-Bidgoli, A. (2019). Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. Journal of Plant Nutrition, 42, 1439-1451.
https://doi.org/10.1080/01904167.2019.1617308
Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., & Islam, M. S. 2021. Evaluation of drought tolerance of some wheat (
Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy, 11, 1792.
https://doi.org/10.3390/agronomy11091792
Dalal, M., Sahu, S., Tiwari, S., Rao, A. R., & Gaikwad, K. 2018. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130, 482-492.
https://doi.org/10.1016/j.plaphy.2018.07.035
Du, L., Huang, X., Ding, L., Wang, Z., Tang, D., Chen, B., ... & Mao, H. (2023). TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1‐mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytologist, 237, 232-250.
https://doi.org/10.1111/nph.18549
Ghahremaninejad, F., Hoseini, E., & Jalali, S. 2021. The cultivation and domestication of wheat and barley in Iran, brief review of a long history. The Botanical Review, 87, 1-22.
https://doi.org/10.1007/s12229-020-09244-w
Giannopolitis, C. N., & Ries, S. K. 1977. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant physiology, 59(2), 315-318.
https://doi.org/10.1104/pp.59.2.309
Grzesiak, S., Hordyńska, N., Szczyrek, P., Grzesiak, M. T., Noga, A., & Szechyńska-Hebda, M. 2019. Variation among wheat (
Triticum easativum L.) genotypes in response to the drought stress: I–selection approaches. Journal of Plant Interactions, 14, 30-44.
https://doi.org/10.1080/17429145.2018.1550817
Hasanuzzaman, M., Mahmud, J. A., Anee, T. I., Nahar, K., & Islam, M. T. 2018. Drought stress tolerance in wheat: omics approaches in understanding and enhancing antioxidant defense. Abiotic stress-mediated sensing and signaling in plants: an omics perspective, 267-307.
https://doi.org/10.1007/978-981-10-7479-0_10
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. 2012. Role of proline under changing environments: a review. Plant signaling and behavior, 7, 1456-1466.
https://doi.org/10.4161/psb.21949
Khosropour, E., Weisany, W., Tahir, N. A. R., & Hakimi, L. (2022). Vermicompost and biochar can alleviate cadmium stress through minimizing its uptake and optimizing biochemical properties in Berberis integerrima bunge. Environmental Science and Pollution Research, 29, 17476-17486.
https://doi.org/10.1007/s11356-021-17073-6
Lahbouki, S., Ech-chatir, L., Er-Raki, S., Outzourhit, A., & Meddich, A. 2022. Improving drought tolerance of Opuntia ficus-indica under field using Subsurface Water Retention Technology: Changes in physiological and biochemical parameters. Canadian Journal of Soil Science, (ja). 12, 234-243.DOI:
10.1139/cjss-2022-0022
Martı̀nez, J. P., Lutts, S., Schanck, A., Bajji, M., & Kinet, J. M. (2004). Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L?. Journal of plant physiology, 161, 1041-1051.
https://doi.org/10.1016/j.jplph.2003.12.009
Miri, M., Ghooshchi, F., Tohidi-Moghadam, H. R., Larijani, H. R., & Kasraie, P. 2021. Ameliorative effects of foliar spray of glycine betaine and gibberellic acid on cowpea (
Vigna unguiculata L. Walp.) yield affected by drought stress. Arabian Journal of Geosciences, 14, 1-9.
https://doi.org/10.1007/s12517-021-07228-7
Mkhabela, S. S., Shimelis, H., Odindo, A. O., & Mashilo, J. 2019. Response of selected drought tolerant wheat (
Triticum aestivum L.) genotypes for agronomic traits and biochemical markers under drought-stressed and non-stressed conditions. Acta Agriculturae Scandinavica, Section B—Soil &
Plant Science, 69, 674-689.
https://doi.org/10.1080/09064710.2019.1641213
Muhammad, F., Raza, M. A. S., Iqbal, R., Zulfiqar, F., Aslam, M. U., Yong, J. W. H., ... & Ibrahim, M. A. (2022). Ameliorating drought effects in wheat using an exclusive or co-applied rhizobacteria and zno nanoparticles. Biology, 11, 1564.
https://doi.org/10.3390/biology11111564
Nasiroleslami, E., Mozafari, H., Sadeghi-Shoae, M., Habibi, D., & Sani, B. 2021. Changes in yield, protein, minerals, and fatty acid profile of wheat (
Triticum aestivum L.) under fertilizer management involving application of nitrogen, humic acid, and seaweed extract. Journal of Soil Science and Plant Nutrition, 2, 2642-2651.
https://doi.org/10.1007/s42729-021-00552-7
Nasirzadeh, L., Sorkhilaleloo, B., Majidi Hervan, E., & Fatehi, F. 2021. Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate, and susceptible wheat genotypes. Cereal Research Communications, 49, 83-89.
https://doi.org/10.1007/s42976-020-00085-2
Ozturk, A., Erdem, E., Aydin, M., & Karaoglu, M. M. (2022). The effects of drought after anthesis on the grain quality of bread wheat depend on drought severity and drought resistance of the variety. Cereal Research Communications, 50, 105-116.
https://doi.org/10.1007/s42976-021-00155-z
Pandey, A., Harohalli Masthigowda, M., Kumar, R., Pandey, G. C., Awaji, S. M., Singh, G., & Pratap Singh, G. (2023). Physio-biochemical characterization of wheat genotypes under temperature stress. Physiology and Molecular Biology of Plants, 29, 131-143.
https://doi.org/10.1007/s12298-022-01267-4
Pastuszak, J., Dziurka, M., Hornyák, M., Szczerba, A., Kopeć, P., & Płażek, A. (2022). Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes. International Journal of Molecular Sciences, 23, 8397.
https://doi.org/10.3390/ijms23158397
Paul, G. K., Mahmud, S., Dutta, A. K., Sarkar, S., Laboni, A. A., Hossain, M. S., ... & Saleh, M. A. (2022). Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat (
Triticum aestivum L.). Scientific Reports, 12, 19137.
https://doi.org/10.1038/s41598-022-22354-2
Rahman, M. A., Woo, J. H., Song, Y., Lee, S. H., Hasan, M. M., Azad, M. A. K., & Lee, K. W. (2022). Heat shock proteins and antioxidant genes involved in heat combined with drought stress responses in perennial rye grass. Life, 12, 1426.
doi.org/10.3390/life12091426
Ru, C., Wang, K., Hu, X., Chen, D., Wang, W., & Yang, H. (2023). Nitrogen modulates the effects of heat, drought, and combined stresses on photosynthesis, antioxidant capacity, cell osmoregulation, and grain yield in winter wheat. Journal of Plant Growth Regulation, 42, 1681-1703.
https://doi.org/10.1007/s00344-022-10650-0
Shah, S. M. D. M., Shabbir, G., Malik, S. I., Raja, N. I., Shah, Z. H., Rauf, M., & Yang, S. H. 2022. Delineation of Physiological, Agronomic and Genetic Responses of Different Wheat Genotypes under Drought Condition. Agronomy, 12, 1056.
https://doi.org/10.3390/agronomy12051056
Shirvani, F., Mohammadi, R., Daneshvar, M., & Ismaili, A. 2022. Genetic variability, response to selection for agro-physiological traits, and traits-enhanced drought tolerance in durum wheat. Acta Ecologica Sinica.
https://doi.org/10.1016/j.chnaes.2022.10.009
Soltani, A., Alimagham, S. M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., & Van Ittersum, M. K. (2020). Future food self-sufficiency in Iran: A model-based analysis. Global Food Security, 24, 100351.
https://doi.org/10.1016/j.gfs.2020.100351
Verma, K. K., Song, X. P., Zeng, Y., Li, D. M., Guo, D. J., Rajput, V. D., & Li, Y. R. 2020. Characteristics of leaf stomata and their relationship with photosynthesis in
Saccharum officinarum under drought and silicon application. ACS omega, 5, 24145-24153.
https://doi.org/10.1021/acsomega.0c03820
Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., & EL Sabagh, A. 2021. Evaluation of fourteen bread wheat (
Triticum aestivum L.) genotypes by observing gas exchange parameters, relative water and chlorophyll content, and yield attributes under drought stress. Sustainability, 13, 4799.
https://doi.org/10.3390/su13094799
Zadegan, K., Monem, R., & Pazoki, A. 2023. Silicon Dioxide Nanoparticles Improved Yield, Biochemical Attributes, and Fatty Acid Profile of Cowpea (
Vigna unguiculata [L.] Walp) Under Different Irrigation Regimes. Journal of Soil Science and Plant Nutrition, 1-12.
https://doi.org/10.1007/s42729-023-01297-1