Abdalla, M. M., & El-Khoshiban N. H. 2007. The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticum aestivum cultivars. Journal of Applied Science Research, 3 (12), 2062-2074.
Arnon, D. I. 1949. Copper enzymes in isolated chloroplast. Poly phenol oxide in Beta vulgaris. Plant Physiology, 24, 1-15.
Bates. L., Waldren, R. P., & Teare, I. D. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207.
Blum, A. 2017. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40 (1), 4-10.
Chaudhry, S., & Sidhu, G. P. S. 2022. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41 (1), 1-31.
Chen, J., Xu, W., Velten, J., Xin, Z., & Stout, J. 2012. Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67, 354–64.
Daryanto, S., Wang, L., & Jacinthe, P. A. 2016. Global synthesis of drought effects on maize and wheat production. PLoS One, 11:e0156362. doi:10.1371/journal.pone.0156362
Dastfal, M., Brati, V., Navabi, F., & Haghighatnia, H. 2009. Effect of terminal drought stress on grain yield and its components in bread wheat (Triticum aestivum L.) genotypes in dry and warm conditions in south of fars province. Seed and Plant Production, 25 (3), 329-344. [In Persian]
Dong, B., Zheng, Z., Liu, H., Able, J. A., Yang, H., Zhao, H., Zhang, M., Qiao, Y., Wang, Y. & Liu, M. 2017. Effects of drought stress on pollen sterility, grain yield, abscisic acid and protective enzymes in two winter wheat cultivars. Frontiers in Plant Science, 8: 1008,
https://doi.org/10.3389/fpls.2017.01008
Fang Y. & Xiong, L. 2015. General mechanisms of drought response and their application drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72, 673-689.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. 2009. Plant Drought Stress: Effects, Mechanisms and Management. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht.
https://doi.org/10.1007/978-90-481-2666-8-12
Farshadfar, E., Moradi, F., & Mohammadi, R. 2013. Evaluation of bread wheat genotypes for drought torlerance using agro-physiological traits. Iranian Dryland Agronomy Journal, 2 (1), 63-84. [In Persian]
Ghosh, U. K., Islam, M. N., Siddiqui, M. N., Cao, X., & Khan, M. A. R. 2022. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms, Plant Biology, 24 (2), 227-239.
Gurumurthy, S., Sarkar, B., Vanaja, M., Lakshmi, J., Yadav, S. K. & Maheswari, M. 2019. Morpho-physiological and biochemical changes in black gram (Vigna mungo L. Hepper) genotypes under drought stress at flowering stage. Acta Physiologiae Plantarum, 41 (3), 42-51.
Igrejas, G., & Branlard, G. 2020. The Importance of wheat. In: Igrejas, G., Ikeda, T., Guzmán, C. (eds) Wheat quality for improving processing and human health. Springer, Cham.
https://doi.org/10.1007/978-3-030-34163-3_1
Javed, A., Ahmad, N., Ahmad, J., Hameed, A., Ashrf, M. A., Zafar, S. A., Maqbool, A., Ll-Amrah, H., Alatawi, H.A., Al-Harbi, M.S., & Ali, E.F. 2022. Grain yield, chlorophyll and protein contents of elite wheat genotypes under drought stress. Journal of King Saud University Science, 34 (7), 102279,
https://doi.org/10.1016/j.jksus.2022.102279
Khadka, K., Earl, H. J., Raizada, M., & Navabi, A. 2020. A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11 (715), 1-26.
Konopatskaia, I., Vavilova, V., Blinov, A., & Goncharov, N. P. 2016. Spike morphology genes in wheat species (
Triticum L.). Proceedings of the Latvian Academy of Sciences. Section B, 6 (705), 345-355. DOI:
https://doi.org/10.1515/prolas-2016-0053
Malhi, G. S., Kaur, M., & Kaushik, P. 2021. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13 (3), 1318.
Ministry of Agriculture-Jahad. 2022. Agricultural statistics. First volume: Crops. Tehran. [in Persian]
Mwadzingeni, L., Shimelis, H., Tesfay, S., & Tsilo, T. J. 2016. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Frontiers in Plant Science, 7, 1276, doi:10.3389/fpls.2016.01276
Naghavi, M. R., Toorchi, M., Moghadam, M., & Shakiba, M. R. 2015. Evaluation of diversity and traits correlation in spring wheat cultivars under drought stress. Notulae Scientia Biologicae, 7 (3), 349-354. DOI: 10.15835/nsb.7.3.9592
Onyemaobi, I., Liu, H., Siddique, K. H. M., & Yan, G. 2017. Both male and female malfunction contributes to yield reduction under water stress during meiosis in bread wheat. Frontiers in Plant Science, 7, 2071,
https://doi.org/10.3389/fpls.2016.0.071
Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Rizwan, M. S., & Hussain, M. 2020. Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS ONE 15 (5), e0232974.
https://doi.org/10.1371/journal.pone.0232974
Shahgholi, S., Sayfzadeh, S., Hadidi Masouleh, E., Shahsavari, N., & Zakeri, H. 2023. Assessment of zinc, boron, and iron foliar application on wheat yield and yield components under drought stress, Communication in Soil Science and Plant Analysis, 54 (9), 1283-1292.
https://doi.org/10.1080/00103624.2022.2141772
Sharifi, P., & Mohammadkhani, N. 2016. Effects of drought stress on photosynthesis factors in wheat genotypes during anthesis. Cereal Research Communications, 44 (2), 229–239. DOI: 10.1556/0806.43.2015.054
Sharma, D. K., Andersen, S. B., Ottosen, C. O., & Rosenqvist, E. 2015. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153, 284–98. https://doi.org/10.1111/ppl.12245 PMID: 24962705
Simkin, A. J., Kapoor, L., Doss, C. G. P., Hofmann, T. A., Lawson, T., & Ramamoorthy, S. 2022. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta.
Photosynthesis Research, 152, 23-42.
Vahamidis, P., Karamanos, A., Economou, G., & Fasseas, S. 2014. A new scale for the assessment of wheat spike morphogenesis, Annals of Applied Biology, 164(2), 220-231.
https://doi.org/10.1111/aab.12097
Vendruscolo, A. C. G., Schuster, I., Pileggi, M., Scapim, C. A., Molinari, H. B. C., Marur, C. J., & Vieira, L. G. C. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 164, 1367-1376.
Zandalinas S. I., Mittler R., Balfagon D., Arbona V., & Gomez-Cadenaz A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiolgia Plantarum, 162, 2–12.
Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., & Peng, C. 2018. Effect of drought on agronomic traits of rice and wheat: a metaanalysis. International Journal of Environmental Research Public Health 15, 839. doi: 10.3390/ijerph15050839.